

Member of the Danfoss Group

Logic Elements

www.comatrol.com

Logic Elements Catalog Quick Reference

Logic Element, Poppet Type	Model No.	Cavity	Description	Flow*	Pressure	Page
1	VLP 12/P2	NCS12/3	Logic Element Poppet,	160 l/min	315 bar	LE - 12
			Double Blocking Closed,	[42 US gal/min]	[4500 psi]	
			Vent to Open			
2						

Logic Element, Poppet Type	Model No.	Cavity	Description	Flow*	Pressure	Page
3	VLP 12/A5	NCS12/3	Logic Element Poppet, Normally Closed, Pilot to Close	160 l/min [42 US gal/min]	315 bar [4500 psi]	LE - 14

Logic Element, Poppet Type	Model No.	Cavity	Description	Flow*	Pressure	Page
3	VLP 12/C2	NCS12/3	Logic Element Poppet, Normally Closed, Vent to Open	160 l/min [42 US gal/min]	315 bar [4500 psi]	LE - 16

Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
$(3) \xrightarrow{(2)} (1)$	HLEA10-CPC	SDC10-3S	Logic Element, Normally Closed, Pilot to Close	80 l/min [21 US gal/min]	350 bar [5075 psi]	LE - 18

Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP700-1	SDC10-3	Logic Element,	50 l/min	210 bar	LE - 20
			Normally Closed,	[13 US gal/min]	[3045 psi]	
(2)	HLE10-CPC	SDC10-3S	Pilot to Close	80 l/min	350 bar	LE - 22
				[21.1 US gal/min]	[5075 psi]	
	CP701-1	CP12-3S		150 l/min	210 bar	LE - 24
				[40 US gal/min]	[3045 psi]	
◆	CP702-1	SDC16-3S		190 l/min	210 bar	LE - 26
				[50 US gal/min]]	[3045 psi]	
	LE20-CPC	CP20-3S		320 l/min	207 bar	LE - 28
				[90 US gal/min	[3000 psi]	

* Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

L

Logic Elements Catalog Quick Reference

Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
(2)	HLEA10-CVO	SDC10-3S	Logic Element,	80 l/min	350 bar	LE - 30
			Normally Closed,	[21 US gal/min]	[5075 psi]	
			Vent to Open			
Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP700-2	SDC10-3	Logic Element,	50 l/min	210 bar	LE - 32
			Normally Closed,	[13 US gal/min]	[3045 psi]	
(2)	HLE10-CVO	SDC10-3S	Vent to Open	80 l/min	350 bar	LE - 34
				[21.1 US gal/min]	[5075 psi]	
	CP701-2	CP12-3S		150 l/min	210 bar	LE - 36
				[40 US gal/min]	[3045psi]	
••••••	CP702-2	SDC16-3S		190 l/min	210 bar	LE - 38
1				[50 US gal/min]	[3045psi]	
	CP703-2	CP20-3S		320 l/min	210 bar	LE - 40
				[85 US gal/min]	[3045psi]	

Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
	HLEA10-OPO	SDC10-3S	Logic Element, Normally Open, Pilot to Open	60 l/min [16 US gal/min]	350 bar [5075 psi]	LE - 42

Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP700-4	SDC10-3	Logic Element, Normally Open,	40 l/min [11 US gal/min]	210 bar [3045 psi]	LE - 44
0	HLE10-OPO	SDC10-3S	Pilot to Open	60 l/min	350bar	LE - 46
				[15.8 US gal/min]	[5075 psi]	
③ —≍ —₩ Ì ½	CP701-4	CP12-3S		75 l/min	210 bar	LE - 48
				[20 US gal/min]	[3045 psi]	
2	CP702-4	SDC16-3S		114 l/min	210 bar	LE - 50
				[30 US gal/min]	[3045 psi]	
	CP703-4	CP20-3S		200 l/min	210 bar	LE - 52
				[53 US gal/min]	[3045 psi]	

Logic Element, Spool Type	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP700-3	SDC10-3	Logic Element,	40 l/min	210 bar	LE - 54
			Normally Open,	[11 US gal/min]	[3045 psi]	
	CP701-3	CP12-3S	Vent to Close	80 l/min	210 bar	LE - 56
				[21 US gal/min]	[3045 psi]	
	CP702-3	SDC16-3S	-	115 l/min	210 bar	LE - 58
(2)				[30 US gal/min]	[3045 psi]	

* Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

Logic Elements Catalog Quick Reference

Pressure Compensator	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP310-4	SDC10-4	Pressure Compensator,	40 l/min	210 bar	LE - 60
32			Flow Control,	[11 US gal/min]	[3045 psi]	
	CP311-4	CP12-4	Priority	60 l/min	210 bar	LE - 62
/Y\ _				[16 US gal/min]	[3045 psi]	
)((CP312-4	CP16-4		130 l/min	210 bar	LE - 64
(4)(1)				[34 US gal/min]	[3045 psi]	
	CP313-4	SDC20-4		340 l/min	210 bar	LE - 66
				[90 US gal/min]	[3045 psi]	

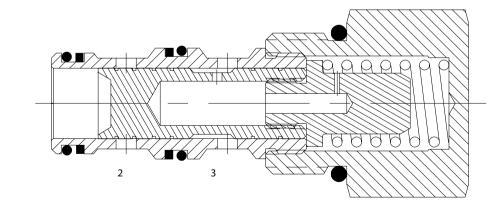
Pressure Compensator	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP300-4	SDC10-3	Pressure Compensator,	40 l/min	210 bar	LE - 68
			Flow Control,	[11 US gal/	[3045 psi]	
			Restrictive	min]		
2	CP301-4	CP12-3		90 l/min	210 bar	LE - 70
				[24 US gal/	[3045 psi]	
M				min]		
	CP302-4	SDC16-3		130 l/min	210 bar	LE - 72
				[34 US gal/	[3045 psi]	
(3)				min]		
	CP303-4	SDC20-3		284 l/min	210 bar	LE - 74
				[75 US gal/	[3045 psi]	
				min]		

Pressure Compensator	Model No.	Cavity	Description	Flow*	Pressure	Page
24	CP310-6	SDC10-4	Pressure Compensator, Load Sense, Priority,	40 l/min [11 US gal/ min]	210 bar [3045 psi]	LE - 76
	PC12-LPS	CP12-4	Static	114 l/min [30 US gal/ min]	210 bar [3045 psi]	LE - 78
	PC16-LPS	CP16-4		125 l/min [30 US gal/ min]	210 bar [3045psi]	LE - 80
	CP313-6	SDC20-4		200 l/min [53 US gal/ min]	210 bar [3045 psi]	LE - 82

* Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

OVERVIEW

Logic Elements are multi-purpose devices. These valves, when used with other cartridge valves, can create a wide variety of circuits for control of pressure, flow, and direction.


Differential sensing valves

SPRING BIASED, NORMALLY CLOSED, VALVES

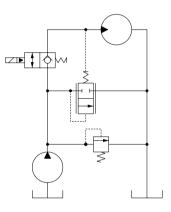
Spring-biased, normally-closed differential sensing valves include: CP700-1, HLE10-CPC, HLEA10-CPC, CP701-1, and CP702-1. These valves are normally closed and will modulate **DIFFERENTIAL SENSING** based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

Spring biased, normally closed, differential sensing valve cross section

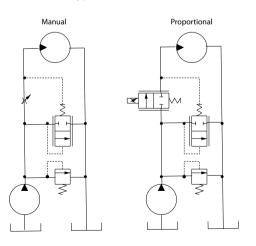
1

SPRING BIASED, NORMALLY CLOSED, DIFFERENTIAL SENSING VALVES (continued)

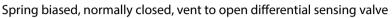
Common applications

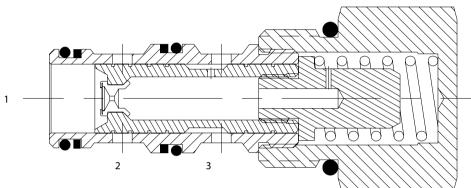

.

- Load-sensing for a fixeddisplacement pump with single or multiple actuators.
- Bypass-type pressure-compensated flow control.


Multiple actuator load sensing

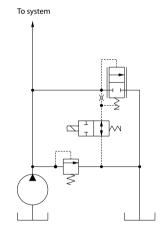
Single actuator load sensing


Bypass flow control

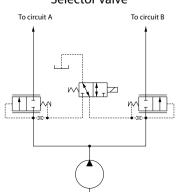


SPRING BIASED, NORMALLY CLOSED, VENT TO OPEN DIFFERENTIAL SENSING VALVES

Spring-biased, normally-closed, vent-to-open differential sensing valves include: CP700-2, HLE10-CVO, HLEA10-CVO, CP701-2, and CP702-2. These valves are normally closed and will modulate based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.



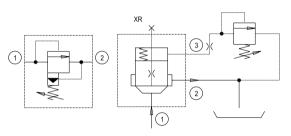
Common applications include:

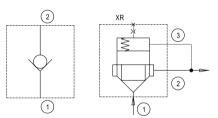

- Pump unloading.
- · Pilot-operated relief valve.
- Selector circuit.

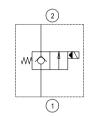
Pilot-operated relief valve To system

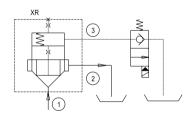
Pump unloading

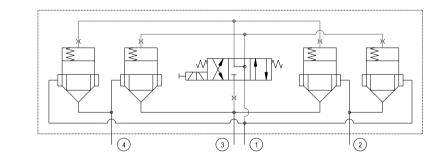
Selector valve



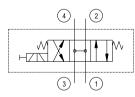

LOGIC ELEMENT **POPPET-TYPE CIRCUIT EXAMPLES**

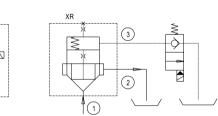

Poppet-type logic elements provide a multitude of hydraulic circuit options, as illustrated in the circuit examples below. These poppet designs provide low-leakage and are commonly piloted. to provide the needed functionality, as a pressure relief, check valve, directional valve, or flow control.


PRESSURE RELIEF VALVE VLP /P2

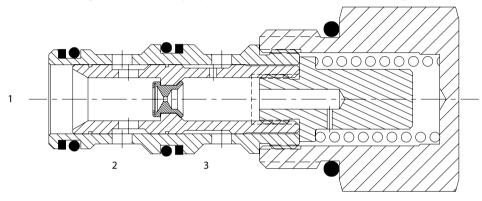


CHECK VALVE VLP /A5

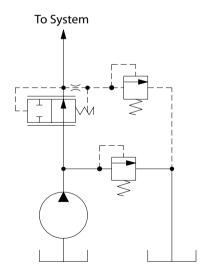




4-3 WAY ON-OFF VALVES VLP/A5



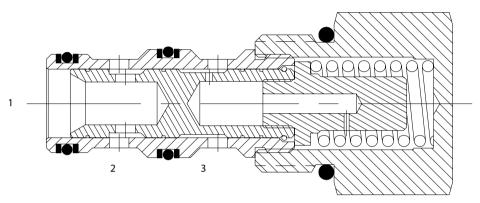
DIRECTIONAL VALVE VLP /C2


SPRING BIASED, NORMALLY OPEN, VENT TO CLOSE, DIFFERENTIAL SENSING VALVES Spring-biased, normally-open, vent-to-close differential sensing valves include: CP700-3, CP701-3, and CP702-3. These valves are normally open and will modulate based on spring control pressure, outlet pressure at port 1, and pilot pressure at port 3. One application for this valve is to create a high-flow pressure reducing valve when using a small relief valve (like CP208-1), or a proportional relief valve (like PRV08-DAC) as a pilot element.

Spring biased, normally open, vent to close, differential sensing valve

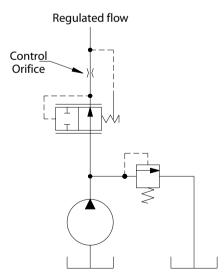
Common applications:

Pilot-operated pressure reducing valve


SPRING BIASED, NORMALLY OPEN, DIFFERENTIAL SENSING VALVES

Spring-biased, normally-open differential sensing valves include: CP700-4, CP701-4, HLE10-OPO, HLEA10-OPO and CP702-4. These valves are normally open and will modulate based on spring control pressure, outlet pressure at port 1, and pilot pressure at port 3. One application for this valve is as a pressure compensator when used with a fixed or adjustable orifice to create a pressure-compensated flow control.

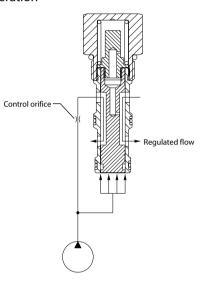
Spring biased, normally open, differential sensing valve


Logic Elements Catalog

Application Notes

Common applications:

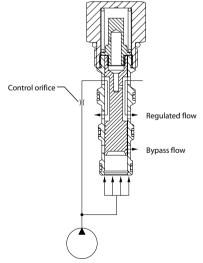
Pressure compensator



PRESSURE COMPENSATING, DIFFERENTIAL SENSING VALVES

Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures. Note that a pressure compensator is required when using Comatrol direct-acting proportional flow controls; see *Proportional valve application notes* for more information.

Restrictive-type


Restrictive-type pressure compensators are three-ported valves that work in series with a fixed or variable control orifice. The pressure compensator is located downstream of the orifice and is spring-biased to an open position as shown. The spool "senses" the pressure on either side of the control orifice and will vary it's restriction in order to maintain a constant pressure differential across the control orifice, hence maintaining a constant flow rate. Restrictive-type pressure compensator operation

Priority-type

Priority-type pressure compensators are four-ported valves that work in series with a fixed or variable control orifice. As with the restrictive-type valves, these valves maintain a constant pressure differential across the control orifice. However, rather than restricting flow when the differential pressure becomes too high, the priority-type pressure compensators open a fourth bypass port for all flow in excess of that demanded by the control orifice. Note that if the bypass port is blocked, the valve will function as a restrictive-type pressure compensator.

Priority-type pressure compensator operation

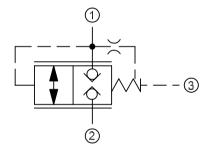
SUMMARY

All of these circuits are particularly effective to control high flows while using small (e.g. 8 series) solenoid and relief valves as pilot elements. The above examples are typical circuits but are by no means the only applications for these valves. Effective use of differential sensing valves is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

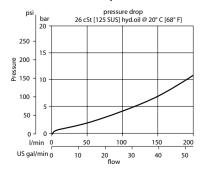
Logic Elements Catalog Poppet Type, Double-Blocking VLP 12/P2

OPERATION

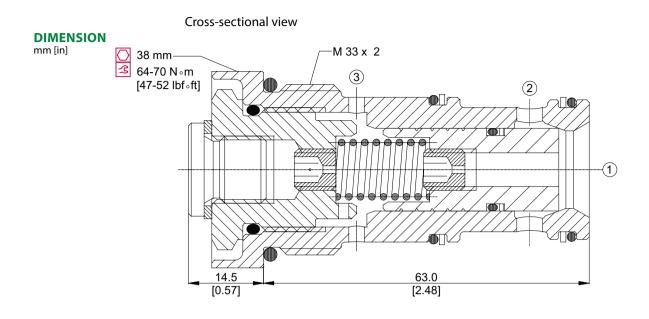
The VLP 12/P2 is a metric 12-size, normally-closed, vent-to-open, poppet-type, double-blocking, spring biased differential-sensing logic element. It will provide on/off flow control from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

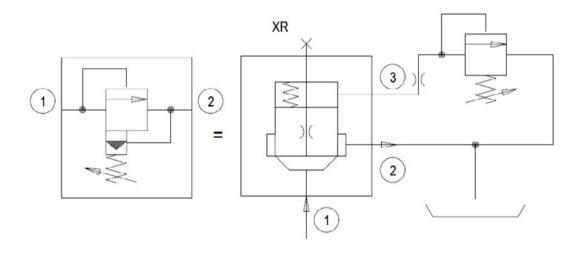

APPLICATION

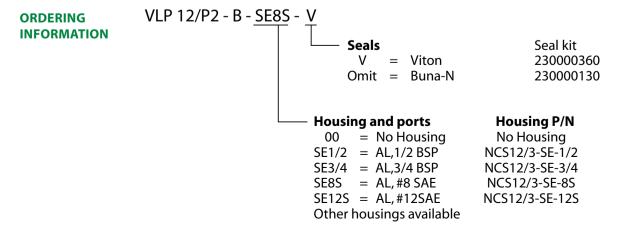
The valve provides on/off, leakage-free control in both directions, suitable for use as a high flow relief valve when used with a relief valve to pilot. Common applications include: pump unloading, pilot-operated relief valve, sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	315 bar [4500 psi]
Rated flow at 7 bar	160 l/min
[100 psi]	[42 US gal/min]
Weight	0.30 kg [0.66 lb]
Cavity	NCS12/3
Bias spring	2 bar [29 psi]


SCHEMATIC


PERFORMANCE CURVE

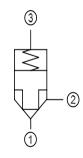


EXAMPLE CIRCUITS

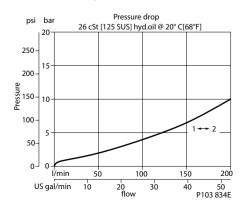
Logic Elements Catalog Poppet Type VLP 12/A5

OPERATION

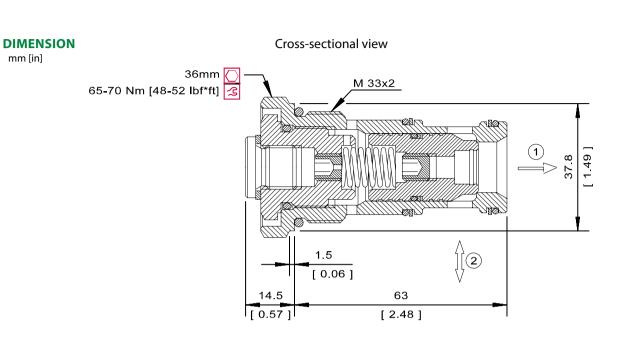
The VLP 12/A5 is a metric 12-size, normally-closed, pilot-to-close, poppet-type, spring biased differential-sensing logic element. It will provide on/off flow control from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.


APPLICATION

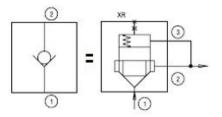
The valve provides on/off, leakage-free control, suitable for use as a high flow check valve when piloted with a small check valve; or a high flow directional valve when piloted with a directional solenoid valve, using four VLP 12/A5 valves. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

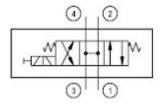

SPECIFICATION

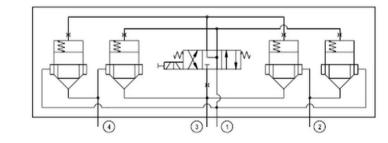
Rated pressure	315 bar [4500 psi]	
Rated flow at 7 bar	160 l/min	
[100 psi]	[42 US gal/min]	
Weight	0.30 kg [0.66 lb]	
Cavity	NCS12/3	
Bias spring	2 bar [29 psi]	


SCHEMATIC

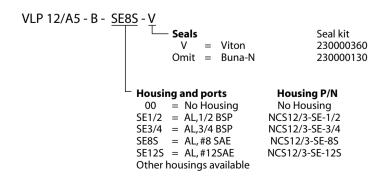
PERFORMANCE CURVE




Logic Elements Catalog Poppet Type VLP 12/A5


EXAMPLE CIRCUITS

Check Valve



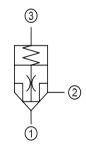
4-3 Way On-Off Valve

ORDERING INFORMATION

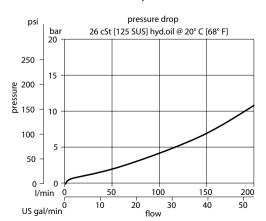
OPERATION

The VLP 12/C1 is a metric 12-size, normally-closed, vent-to-open, poppettype, spring biased differential-sensing logic element. It will provide on/ off flow control from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

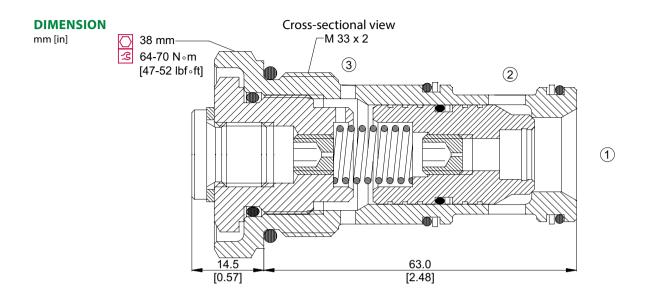
APPLICATION

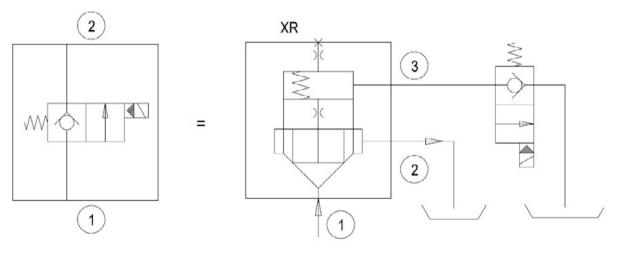

The valve provides on/off, leakage-free control, suitable for use as a high flow relief valve when piloted with a relief valve or a high flow unloading solenoid when piloted with a small solenoid valve. Common applications include: pump unloading, pilot-operated relief valve, sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

LE - Logic Elements VLP 12/C2


SPECIFICATION

Rated pressure	315 bar [4500 psi]	
Rated flow at 7 bar	160 l/min	
[100 psi]	[42 US gal/min]	
Weight	0.30 kg [0.66 lb]	
Cavity	NCS12/3	
Bias spring	2 bar [29 psi]	


SCHEMATIC


PERFORMANCE CURVE

EXAMPLE CIRCUITS

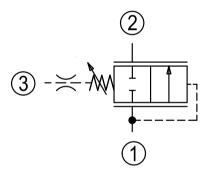
ORDERING VLP 12/C2 - B - SE8S - V **INFORMATION** Seals Seal kit V = Viton 230000360 Omit = Buna-N 230000130 **Housing and ports Housing P/N** 00 = No Housing No Housing SE1/2 = AL, 1/2 BSPNCS12/3-SE-1/2 SE3/4 = AL,3/4 BSPNCS12/3-SE-3/4 SE8S = AL, #8 SAE NCS12/3-SE-8S SE12S = AL, #12SAE NCS12/3-SE-12S Other housings available

Logic Elements Catalog Spool Type HLEA10-CPC

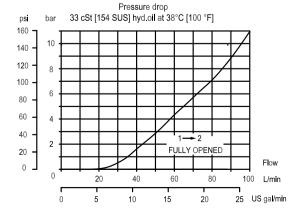
OPERATION

The HLEA10-CPC is a 10-size, high pressure, normally-closed, pilot-to-close, spring biased differential-sensing logic element that includes an adjustable compensator feature. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

APPLICATION


Common applications include load-sensing bypass compensator for a fixed displacement pump with single or multiple actuators as well as bypass-type pressure-compensated flow control. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

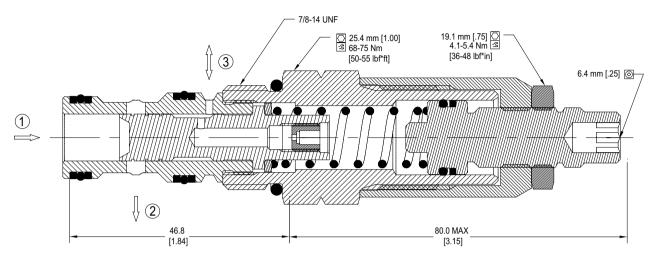
SPECIFICATION


Rated Pressure*	350 bar [5075 psi]
Rated Flow at 7 bar	80 l/min
[100 psi]	[21.1 US gal/min]
Weight	0.29 kg [0.64 lbs]
Cavity	SDC10-3S

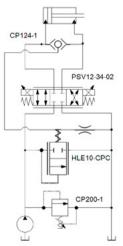
* Rated Pressure based on NFPA fatigue test standards (at 1 Million Cycles).

SCHEMATIC

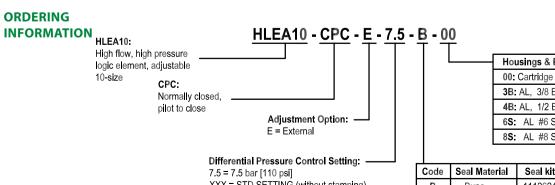
PERFORMANCE CURVE



Logic Elements Catalog Spool Type HLEA10-CPC


DIMENSION

HLE10-CPC


Proportional Bypass Flow Control

EXAMPLE CIRCUITS

Double Acting Cylinder with Proportional Speed Control, Unloading Valve and Circuit Relief

ORDERING

CP200-

PSV12-NC

XXX = STD SETTING (without stamping) Range 2.75 to 15.0 bar [40 psi to 220 psi] To System Ş Ò SVP08-NO ţ. 8 CP208-1 HLE10-CPC

Dump and Relief Valve for a Fixed Pump

 Housings & Ports	Housing P/N
00: Cartridge Only	No Body
3B: AL, 3/8 BSP	SDC10-3S-3B
4B: AL, 1/2 BSP	SDC10-3S-4B
6S: AL #6 SAE	SDC10-3S-6S
8S: AL #8 SAE	SDC10-3S-8S

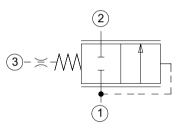
Code	Seal Material	Seal kit
В	Buna	11126248
V	Viton	11126249

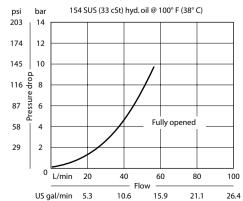
Logic Elements Catalog Spool Type CP700-1

OPERATION

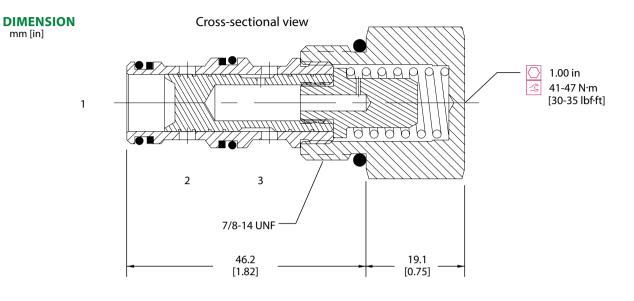
The CP700-1 is a 10-size, normally-closed, pilot-to-close, spool-type, spring biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

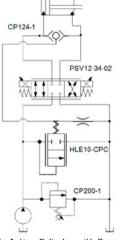
APPLICATION

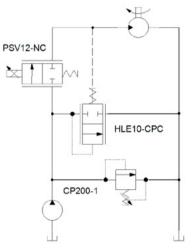

Common applications include load-sensing bypass compensator for a fixed displacement pump with single or multiple actuators as well as bypass-type pressure-compensated flow control. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

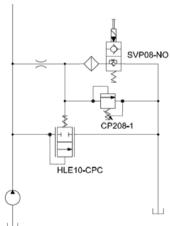

SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	50 l/min
[100 psi]	[13 US gal/min]
Weight	0.12 kg [0.27 lb]
Cavity	SDC10-3

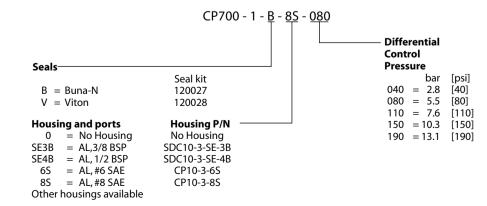

SCHEMATIC


PERFORMANCE CURVE





Double Acting Cylinder with Proportional Speed Control, Unloading Valve and Circuit Relief


Proportional Bypass Flow Control

To System

Dump and Relief Valve for a Fixed Pump

ORDERING INFORMATION

OPERATION

The HLE10-CPC is a 10-size, high pressure, normally-closed, pilot-toclose, spool-type, spring biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

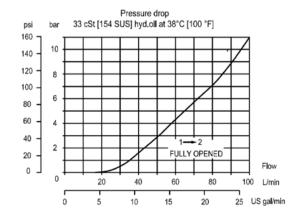
Logic Elements Catalog Spool Type

HLE10-CPC

APPLICATION

Common applications include load-sensing bypass compensator for a fixed displacement pump with single or multiple actuators as well as bypass-type pressure-compensated flow control. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer

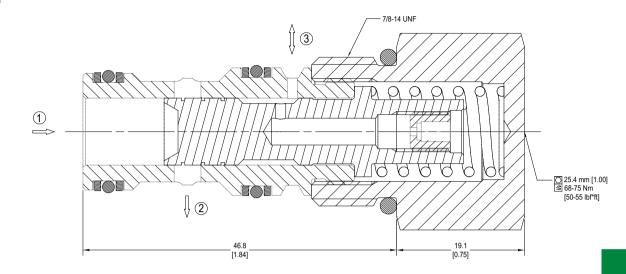
LE - Logic Elements HLE10-CPC

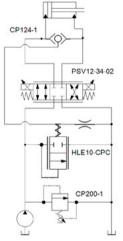

SPECIFICATION

Rated Pressure*	350 bar [5075 psi]
Rated Flow at 7 bar	80 l/min
[100 psi]	[21.1 US gal/min]
Weight	0.14 kg [0.31 lbs]
Cavity	SDC10-3S

* Rated Pressure based on NFPA fatigue test standards (at 1 Million Cycles).

SCHEMATIC ② ③-≍-///↓ ↓ ↓ ↓


PERFORMANCE CURVE



Logic Elements Catalog Spool Type HLE10-CPC

DIMENSION

EXAMPLE CIRCUITS



Double Acting Cylinder with Proportional Speed Control, Unloading Valve and Circuit Relief

ATION	HLE10: High flow, high pressure, - logic element, 10-size
	CPC: Normally closed

CPC: Normally closed, pilot to close

Proportional Bypass Flow Control

Differential Pressure Control

Description

2.75 bar [40 psi]

5.5 bar [80 psi]

7.5 bar [110 psi]

10.0 bar [150 psi]

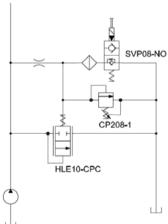
13.0 bar [190 psi]

15.0 bar [220 psi]

Code

2.75

5.5


7.5

10.0

13.0

15.0

To System

Dump and Relief Valve for a Fixed Pump

HLE10- CPC - 2.75 - B - 00

Housings & Ports	Housing P/N
00: Cartridge Only	No Body
3B: AL, 3/8 BSP	SDC10-3S-3B
4B: AL, 1/2 BSP	SDC10-3S-4B
6S: AL #6 SAE	SDC10-3S-6S
8S: AL #8 SAE	SDC10-3S-8S

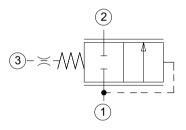
Code	Seal Material	Seal kit
В	Buna	11126248
۷	Viton	11126249

LE - Logic Elements HLE10-CPC

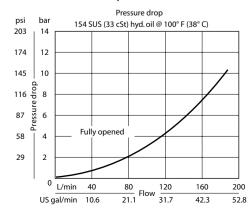
Logic Elements Catalog Spool Type CP701-1

OPERATION

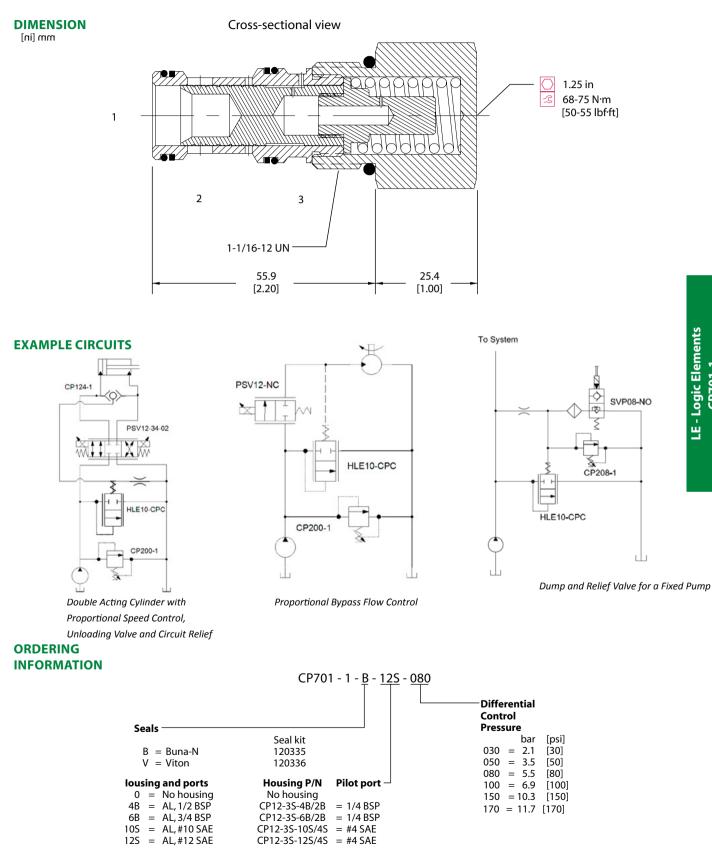
The CP701-1 is a 12-size, normally-closed, pilot-toclose, spool-type,, spring biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.


APPLICATION

Common applications include load-sensing bypass compensator for a fixed displacement pump with single or multiple actuators as well as bypass-type pressure-compensated flow control. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	150 l/min
[100 psi]	[40 US gal/min]
Weight	0.26 kg [0.57 lb]
Cavity	CP12-3S

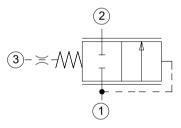

SCHEMATIC

PERFORMANCE CURVE

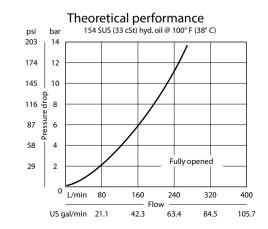
Logic Elements Catalog Spool Type CP702-1

OPERATION

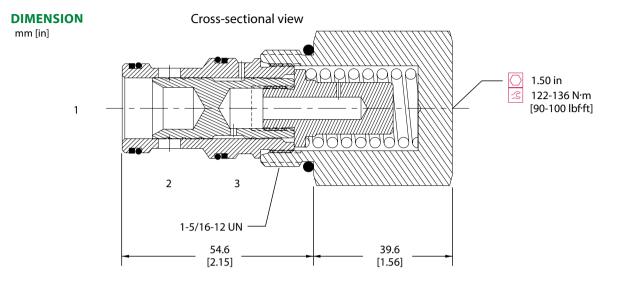
The CP702-1 is a 16-size, normally-closed, pilot-to-close, spool-type,, spring biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

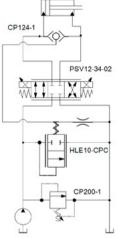

APPLICATION

Common applications include load-sensing bypass compensator for a fixed displacement pump with single or multiple actuators as well as bypass-type pressure-compensated flow control. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	190 l/min
[100 psi]	[50 US gal/min]
Weight	0.38 kg [0.83 lb]
Cavity	SDC16-3S


SCHEMATIC


PERFORMANCE CURVE

EXAMPLE CIRCUITS

Double Acting Cylinder with Proportional Speed Control, Unloading Valve and Circuit Relief

ORDERING

INFORMATION

PSV12-NC	
	HLE10-CPC
	00-1

1

Proportional Bypass Flow Control

<u>CP702-1</u> -<u>B</u> -<u>16S</u> - <u>080</u>

	Soal Ontio	n				-	千
	Seal Optio	on					
	Code	Seal	Material	Sea	l kit		
	В	E	Buna	120	033		
	V	١	/iton	1200)34		
Ηοι	usings & Po	orts	Housing	P/N	Pilot	port	
0: (Cartridge Or	nly	No Hous	ing			
6B:	3/4 BSP, A	L	CP16-3S-6	6B/2B	1/4	BSP	
8B:	1 BSP, AL		CP16-3S-8	3B/2B	1/4	BSP	
12S	: #12 SAE	, AL	CP16-3S-1	2S/4S	#4 S	SAE	

CP16-3S-16S/4S #4 SAE

Differential Control Pressure				
 Code	bar	[psi]		
040	2.8	[40]		
080	5.5	[80]		
110	7.6	[110]		
150	10.3	[150]		
190	13.1	[190]		

To System

Dump and Relief Valve for a Fixed Pump

16S: #16 SAE, AL

Other Housings available

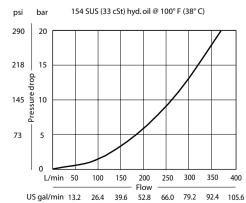
OPERATION

The LE20-CPC is a 20-size, normally-closed, pilot-to-close, spool-type,, spring biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

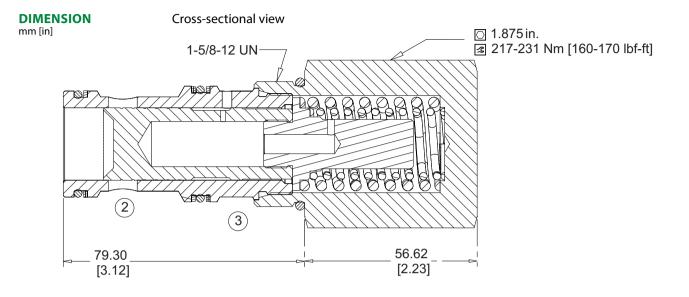
APPLICATION

Common applications include load-sensing bypass compensator for a fixed displacement pump with single or multiple actuators as well as bypass-type pressure-compensated flow control. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

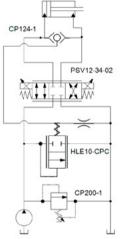
LE - Logic Elements

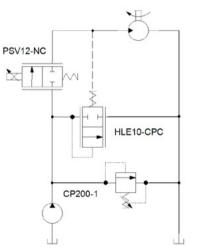

SPECIFICATION

Rated pressure	207 bar [3000 psi]
Rated flow at 7 bar	320 l/min
[100 psi]	[90 US gal/min]
Weight	1.19 kg [2.62 lb]
Cavity	CP20-3S

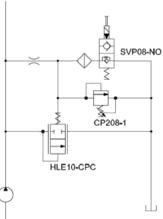


SCHEMATIC


PERFORMANCE CURVE



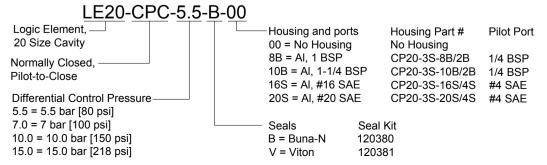
EXAMPLE CIRCUITS



Double Acting Cylinder with Proportional Speed Control, Unloading Valve and Circuit Relief

Proportional Bypass Flow Control

To System



Dump and Relief Valve for a Fixed Pump

LE - Logic Elements

LE20-CPC

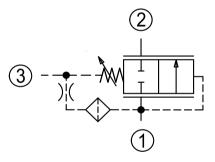
ORDERING INFORMATION

Logic Elements Catalog Spool Type HLEA10-CVO

OPERATION

The HLEA10-CVO is a 10-size, high pressure, normally closed, vent-to-open, spring-biased differential-sensing logic element that includes an adjustable compensator feature. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

APPLICATION

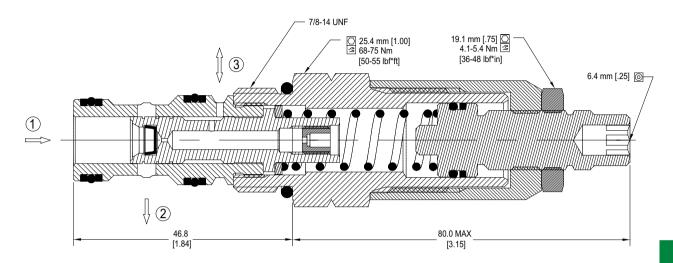

Common applications include: pump unloading, pilot-operated relief valve (mechanical or proportional), sequence valve and selector circuit. The adjustability of the HLEA10 allows the operator to change the compensator setting of the logic element, ranging from 2.75 to 15.2 bar (40 to 220 psi). This is especially helpful when fine tuning the applications, providing flexibility to the operator and allowing for machine optimization

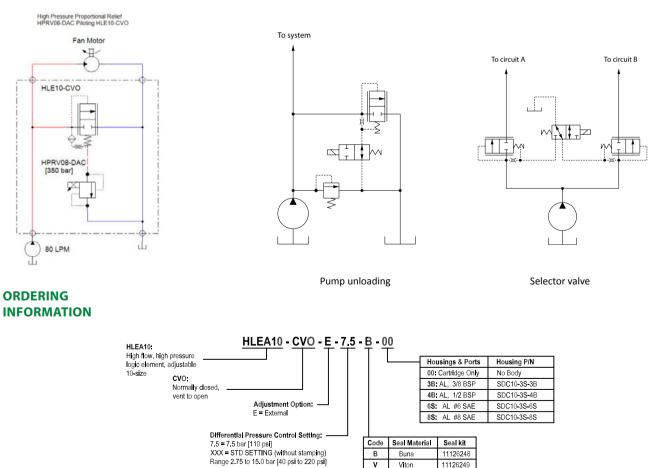
SPECIFICATION


Rated pressure	350 bar [5075 psi]	
Rated flow at 7 bar	80l/min	
[100 psi]	[21 US gal/min]	
Weight	0.29 kg [0.64 lb]	
Cavity	SDC10-3S	

*Rated Pressure based on NFPA fatigue test standards (at 1 Million Cycles).

SCHEMATIC


PERFORMANCE CURVE



Logic Elements Catalog Spool Type HLEA10-CVO

DIMENSION

EXAMPLE CIRCUITS

В

۷

Buna

Viton

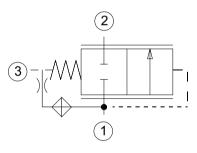
11126248

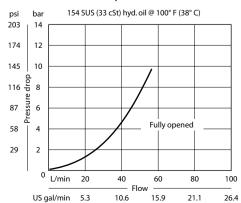
11126249

OPERATION

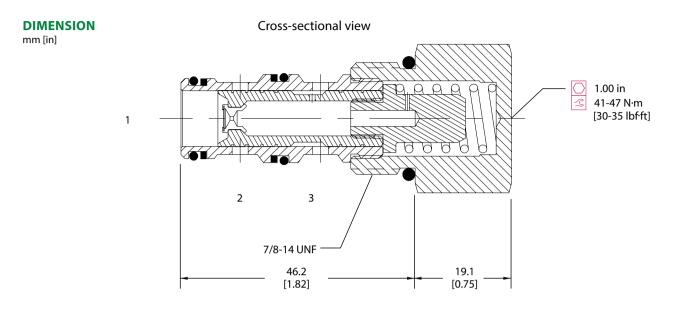
The CP700-2 is a 10-size, normally closed, vent-to-open, springbiased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

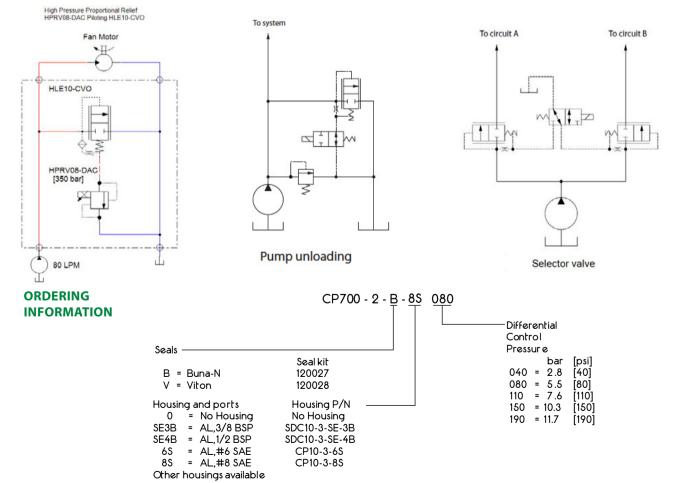
APPLICATION


Common applications include: pump unloading, pilot-operated relief valve (mechanical or proportional), sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	50 l/min
[100 psi]	[13 US gal/min]
Weight	0.13 kg [0.28 lb]
Cavity	SDC10-3


SCHEMATIC


PERFORMANCE CURVE

EXAMPLE CIRCUITS

Logic Elements Catalog Spool Type HLE10-CVO

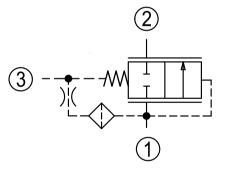
OPERATION

The HLE10-CVO is a 10-size, high pressure, normally closed, vent-to-open, spring-biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

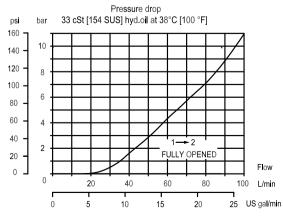
APPLICATION

Common applications include: pump unloading, pilot-operated relief valve (mechanical or proportional), sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

SPECIFICATION

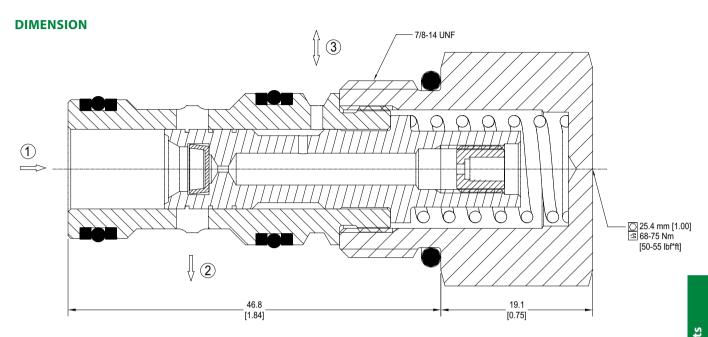

LE - Logic Elements

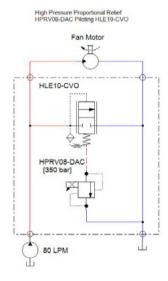
HLE10-CVO

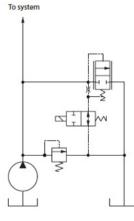

Rated Pressure*	350 bar [5075 psi]
Rated Flow at 7 bar	80 l/min
[100 psi]	[21.1 US gal/min]
Weight	0.14 kg [0.31 lbs]
Cavity	SDC10-3S

* Rated Pressure based on NFPA fatigue test standards (at 1 Million Cycles).

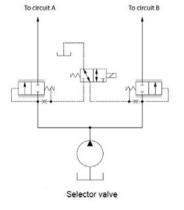
SCHEMATIC


PERFORMANCE CURVE


* INCLUDES SDC10-3S CAVITY WITH SAE #8 PORTS



Logic Elements Catalog Spool Type HLE10-CVO


EXAMPLE CIRCUITS

Pump unloading

18.0

ORDERING INFORMATION

HLE10: High flow, high pressure, logic element, 10-size

CVO: Normally closed, vent to open

Differential Pressure Contro		
Code	Description	
2.75	2.75 bar [40 psi]	
5.5	5.5 bar [80 psi]	
7.5	7.5 bar [110 psi]	
10.0	10.0 bar [150 psi]	
13.0	13.0 bar [190 psi]	
15.0	15.0 bar [220 psi]	

18.0 bar [260 psi]

HLE10	- <u>CVO</u> -	2.75	- <u>B</u> - <u>00</u>)
	1	1		

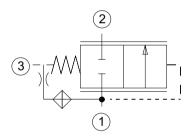
Housings & Ports	Housing P/N
00: Cartridge Only	No Body
3B: AL, 3/8 BSP	SDC10-3S-3B
4B: AL, 1/2 BSP	SDC10-3S-4B
6S: AL #6 SAE	SDC10-3S-6S
8S: AL #8 SAE	SDC10-3S-8S

Code	Seal Material	Seal kit
В	Buna	11126248
V	Viton	11126249

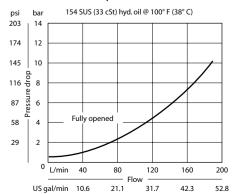
LE - Logic Elements HLE10-CVO

OPERATION

The CP701-2 is a 12-size, normally closed, vent-to-open, spring-biased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

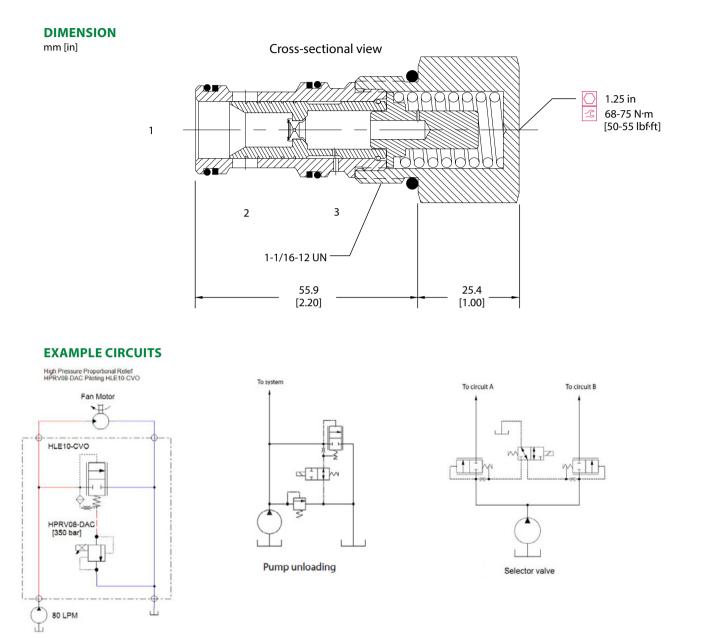

APPLICATION

Common applications include: pump unloading, pilot-operated relief valve (mechanical or proportional), sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

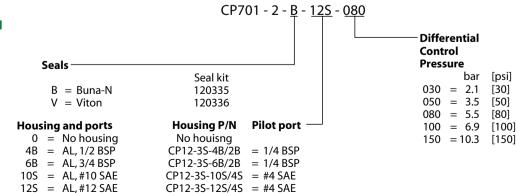

SPECIFICATION

Rated pressure	210 bar [3000 psi]	
Rated flow at 7 bar	150 l/min	
[100 psi]	[40 US gal/min]	
Weight	0.26 kg [0.57 lb]	
Cavity	CP12-3S	

SCHEMATIC



PERFORMANCE CURVE

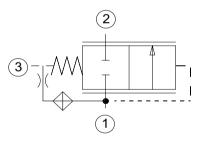


Logic Elements Catalog Spool Type CP701-2

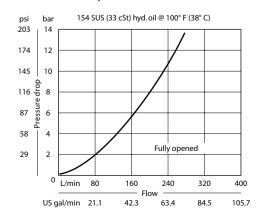
ORDERING INFORMATION

other housings available

The CP702-2 is a 16-size, normally closed, vent-to-open, springbiased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

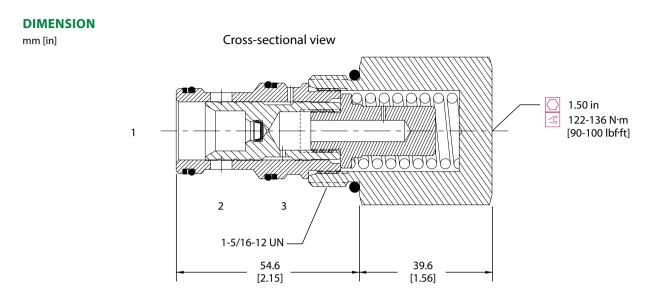

APPLICATION

Common applications include: pump unloading, pilot-operated relief valve (mechanical or proportional), sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

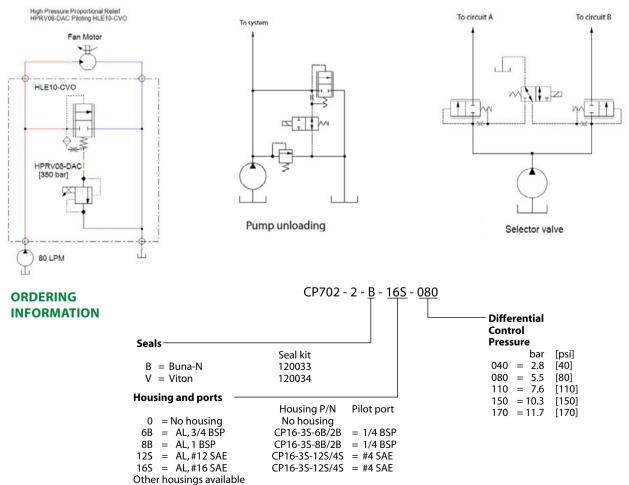

SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	190 l/min
[100 psi]	[50 US gal/min]
Weight	0.38 kg [0.83 lb]
Cavity	SDC16-3S

SCHEMATIC



PERFORMANCE CURVE



Logic Elements Catalog Spool Type CP702-2

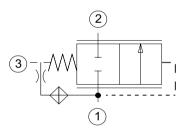
EXAMPLE CIRCUITS

Logic Elements Catalog Spool Type CP703-2

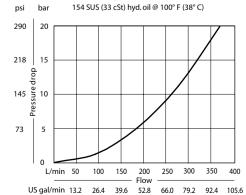
OPERATION

The CP703-2 is a 20-size, normally closed, vent-to-open, springbiased differential-sensing logic element. It will modulate flow from 1 to 2 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

APPLICATION

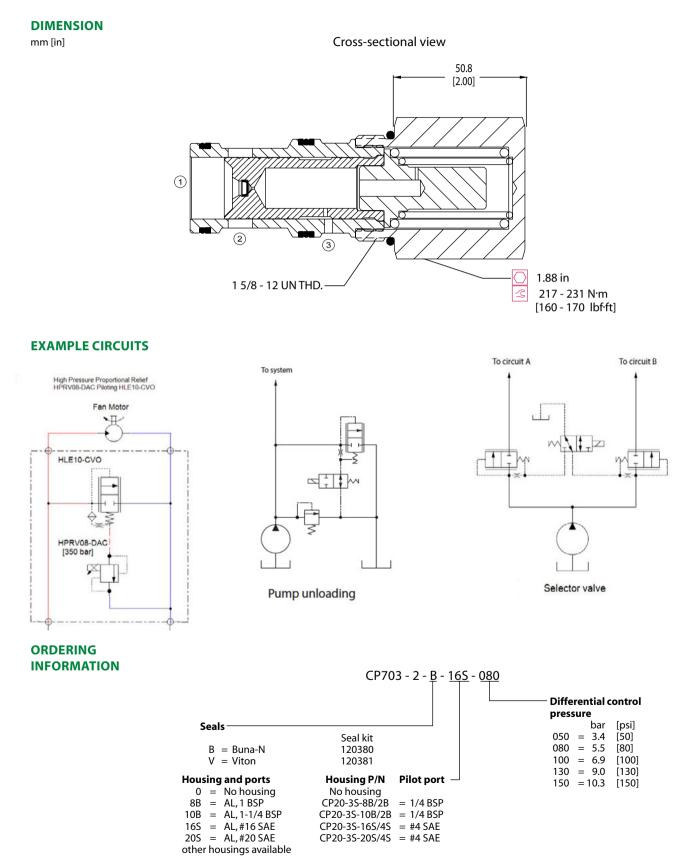

Common applications include: pump unloading, pilot-operated relief valve (mechanical or proportional), sequence valve and selector circuit. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

LE - Logic Elements CP703-2


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	320 l/min
[100 psi]	[85 US gal/min]
Weight 1.18 kg [2.60 lb]	
Cavity	CP20-3S

SCHEMATIC

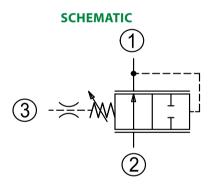


PERFORMANCE CURVE

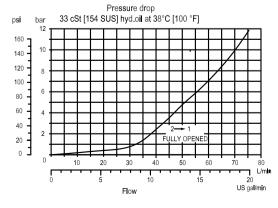
Logic Elements Catalog Spool Type CP703-2

Logic Elements Catalog Spool Type HLEA10-OPO

OPERATION


The HLEA10-OPO is a 10-size, high pressure, normally open, pilot-to-open, spring-biased differential-sensing logic element that includes an adjustable compensator feature. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and pilot pressure at port 3.

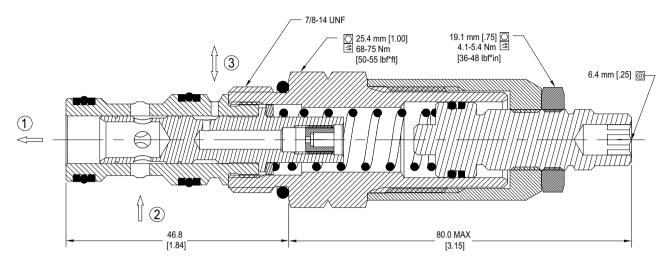
APPLICATION

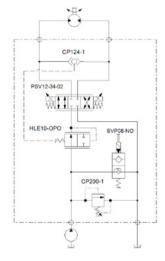

The adjustability of the HLEA10 allows the operator to change the compensator setting of the logic element, ranging from 2.75 to 15.2 bar (40 to 220 psi). This is especially helpful when fine tuning the applications, providing flexibility to the operator and allowing for machine optimization.

SPECIFICATION

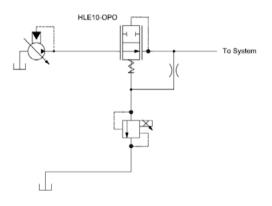
Rated pressure	350 bar [5075 psi]
Rated flow at 7 bar	60 l/min
[100 psi]	[16 US gal/min]
Weight	0.29 kg [0.64 lb]
Cavity	SDC10-3S

PERFORMANCE CURVE

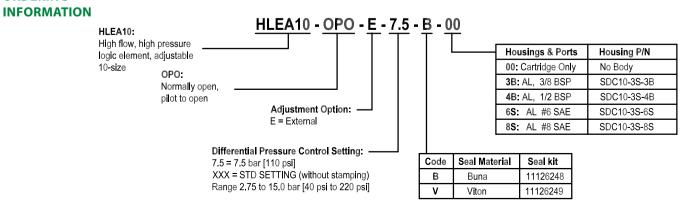



Logic Elements Catalog Spool Type HLEA10-OPO

DIMENSION



EXAMPLE CIRCUITS


ORDERING

Compensated Bi-directional Flow Control

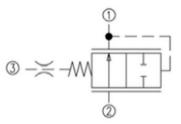
Proportional Pressure Reducing Valve

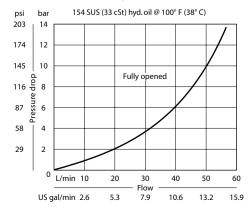
Logic Elements Catalog Spool Type CP700-4

OPERATION

The CP700-4 is a 10-size, normally open, pilot-to-open, springbiased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

APPLICATION


Common applications include: pre-compensator for proportional directional control or flow controls, as well as a pressure control valve. A common application for this valve is as a pressure compensator when applied with a fixed, or adjustable orifice to create a pressure-compensated flow control. This ensures that flow rate, and resulting actuator speed is maintained regardless of pressure drop across the control orifice. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	40 l/min
[100 psi]	[11 US gal/min]
Weight	0.13 kg [0.28 lb]
Cavity	SDC10-3

SCHEMATIC


PERFORMANCE CURVE

EXAMPLE CIRCUITS

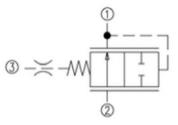
Logic Elements Catalog Spool Type HLE10-OPO

OPERATION

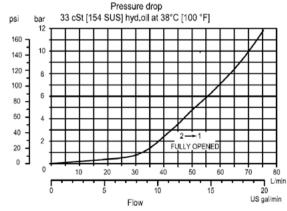
The HLE10-OPO is a 10-size, high pressure, normally open, pilot-to-open, spring-biased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3. The HLE10-OPO technically replaces the CP700-4L, but cavities are not interchangeable.

APPLICATION

Common applications include: as a pre-compensator for proportional directional control or flow controls, as well as a pressure control valve. A common application for this valve is as a pressure compensator when applied with a fixed, or adjustable orifice to create a

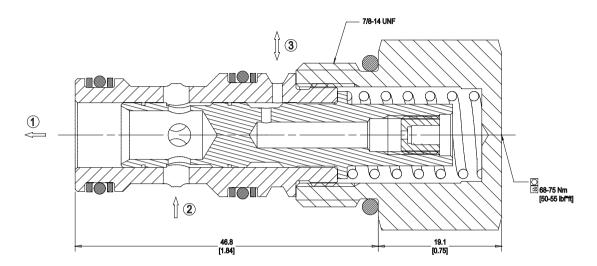

and resulting actuator speed is maintained regardless of pressure drop across the control orifice. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

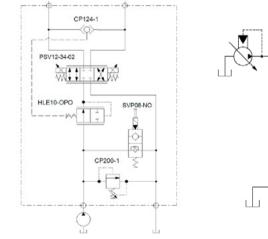
SPECIFICATION


Rated Pressure*	350 bar [5075 psi]
Rated Flow at 7 bar	60 l/min
[100 psi]	[16 US gal/min]
Weight	0.14 kg [0.31 lbs]
Cavity	SDC10-3S

* Rated Pressure based on NFPA fatigue test standards (at 1 Million Cycles).

SCHEMATIC


PERFORMANCE CURVE



Logic Elements Catalog Spool Type HLE10-OPO

DIMENSION

EXAMPLE CIRCUITS

Compensated Bi-directional Flow Control

HLE10-OPO

Proportional Pressure Reducing Valve

ORDERING INFORMATION

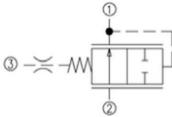
HLE10:				T	Ъ	Code	Ports & Materi	al	Body Nomenclature
High Pressure Logic —						00	Cartridge Only		No Body
Element, 10-size						6S	#6 SAE, AL		SDC10-3S-6S
OPO:						8S	#8 SAE, AL		SDC10-3S-8S
Normally Open,						S6S	#6 SAE, DUCT	ILE	SDC10-3S-S6S
Pilot to Open						S8S	#8 SAE, DUCT	ILE	SDC10-3S-S8S
	Differ	ential Pressure Cor	trol			3B	3/8 BSP, AL		SDC10-3S-3B
	Code	Description				4B	1/2 BSP, AL		SDC10-3S-4B
	2.75	2.75 bar [40 psi]				S3B	3/8 BSP, DUCT	ΓILE	SDC10-3S-S3B
	5.5	5.5 bar [80 psi]				S4B	1/2 BSP, DUCT	ΓILE	SDC10-3S-S4B
	7.5	7.5 bar [110 psi]					0.111	1	
	10.0	10.0 bar [150 psi]		Code		Material	Seal kit		
	13.0	13.0 bar [190 psi]		B	<u> </u>	una	11126248		
	15.0	15.0 bar [218 psi]		V	Vi	ton	11126249		

HLE10 - OPO - 2.75 - B - 00

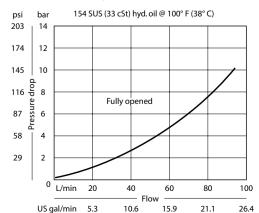
Logic Elements Catalog Spool Type CP701-4

OPERATION

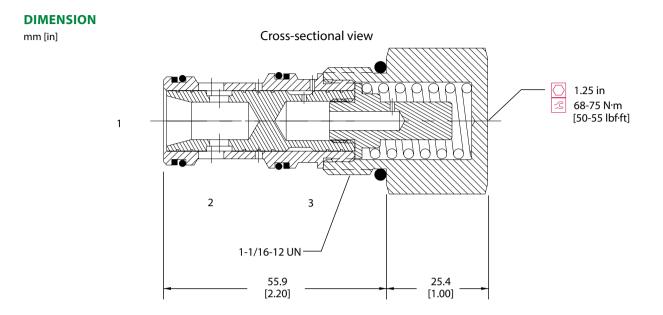
The CP701-4 is a 12-size, normally open, pilot-to-open, springbiased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.


APPLICATION

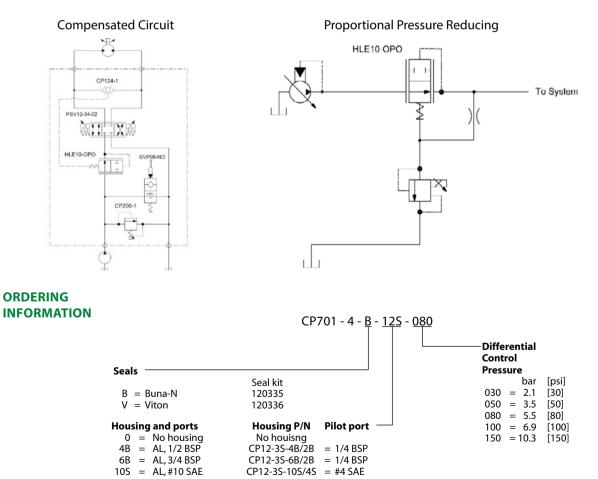
Common applications include: pre-compensator for proportional directional control or flow controls, as well as a pressure control valve. A common application for this valve is as a pressure compensator when applied with a fixed, or adjustable orifice to create a pressure-compensated flow control. This ensures that flow rate, and resulting actuator speed is maintained regardless of pressure drop across the control orifice. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	75 l/min
[100 psi]	[20 US gal/min]
Weight	0.26 kg [0.57 lb]
Cavity	CP12-3S



PERFORMANCE CURVE



Logic Elements Catalog Spool Type CP701-4

EXAMPLE CIRCUITS

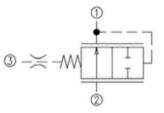
CP12-3S-12S/4S = #4 SAE

12S = AL, #12 SAE

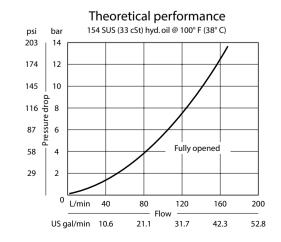
Logic Elements Catalog Spool Type CP702-4

OPERATION

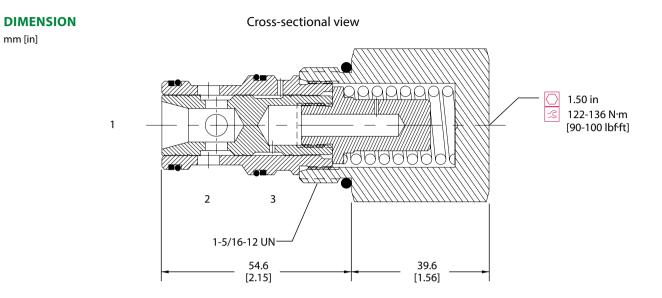
The CP702-4 is a 16-size, normally open, pilot-to-open, spring-biased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

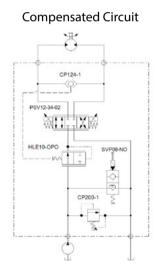

APPLICATION

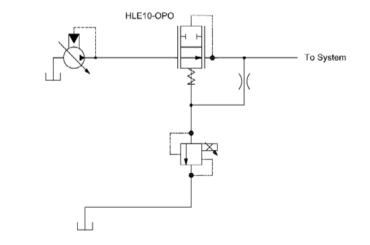
Common applications include: pre-compensator for proportional directional control or flow controls, as well as a pressure control valve. A common application for this valve is as a pressure compensator when applied with a fixed, or adjustable orifice to create a pressure-compensated flow control. This ensures that flow rate, and resulting actuator speed is maintained regardless of pressure drop across the control orifice. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	114 l/min
[100 psi]	[30 US gal/min]
Weight	0.38 kg [0.83 lb]
Cavity	SDC16-3S


SCHEMATIC


PERFORMANCE CURVE



EXAMPLE CIRCUITS

Proportional Pressure Reducing

ORDERING INFORMATION

			••••			_
Seal Optio	n					Τ
Code	Sea	Material	Sea	l kit		
В	E	Buna	120	033		
V	١	/iton	1200	034		
Housings & Po	orts	Housing	P/N	Pilot	port	
0: Cartridge Only		No Hous	ing			
6B: 3/4 BSP, A	L	CP16-3S-6	6B/2B	1/4 I	BSP	
8B: 1 BSP, AL		CP16-3S-8	3B/2B	1/4 I	3SP	
12S: #12 SAE, AL		CP16-3S-1	2S/4S	#4 S	SAE	
16S: #16 SAE,	AL	CP16-3S-1	6S/4S	#4 S	AE	
Other Housing	s availa	ble				

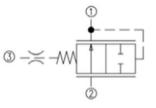
<u>CP702-4-B-16S-080</u>

Differential Control Pressure					
Code	bar	[psi]			
040	2.8	[40]			
080	5.5	[80]			
110	7.6	[110]			
150	10.3	[150]			
190	13.1	[190]			

The CP703-4 is a 20-size, normally open, pilot-to-open, springbiased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

APPLICATION

Common applications include: pre-compensator for proportional directional control or flow controls, as well as a pressure control valve. A common application for this valve is as a pressure compensator when applied with a fixed, or adjustable orifice to create a pressure-compensated flow control. This ensures that flow rate, and resulting actuator speed is maintained regardless of pressure drop across the control orifice. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

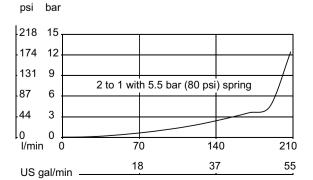

SPECIFICATION

LE - Logic Elements

CP703-4

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	200 l/min
[100 psi]	[53 US gal/min]
Weight	1.18 kg [2.60 lb]
Cavity	CP20-3S

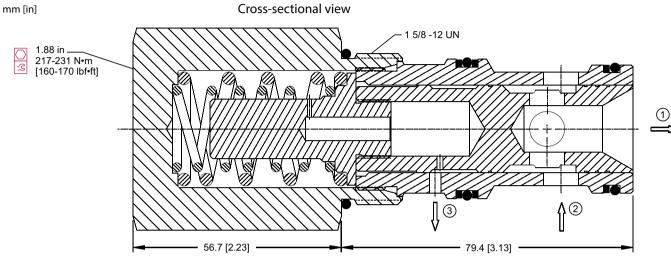
SCHEMATIC

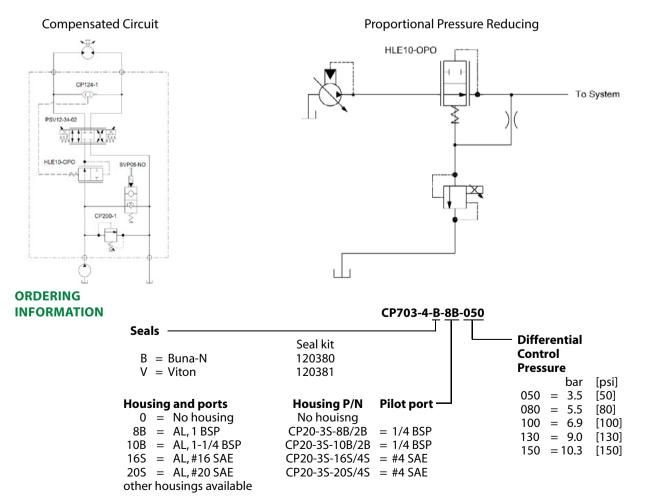


PERFORMANCE CURVE

Theoretical performance

Pressure Drop


33 cSt [154 SUS] hyd.oil @ 38°C [100° F]



Logic Elements Catalog Spool Type CP703-4

EXAMPLE CIRCUITS

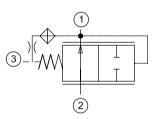
Logic Elements Catalog Spool Type CP700-3

OPERATION

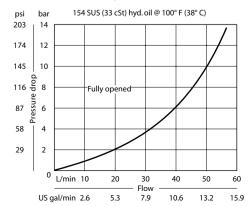
The CP700-3 is a 10-size, normally open, pilot-to-close, springbiased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

APPLICATION

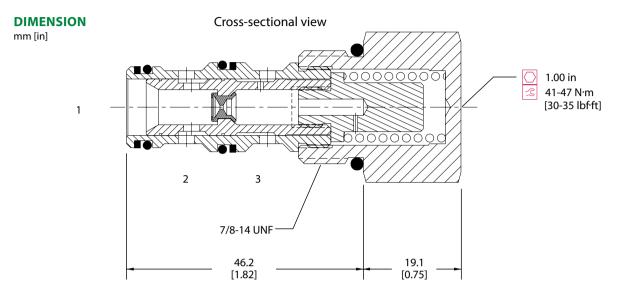
Common applications include: high-flow pressure reducing valve when using a small relief valve (like CP208-1), or a proportional relief valve (like PRV08-DAC) as a pilot element. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

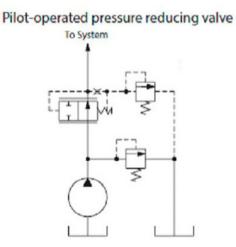

SPECIFICATION

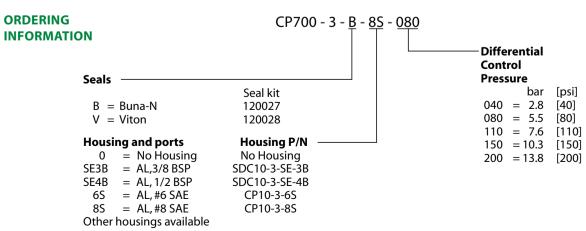
LE - Logic Elements


CP700-3

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	40 l/min
[100 psi]	[11 US gal/min]
Weight	0.13 kg [0.28 lb]
Cavity	SDC10-3

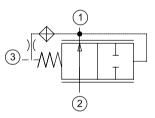

SCHEMATIC


PERFORMANCE CURVE

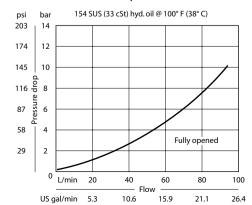


EXAMPLE CIRCUITS

The CP701-3 is a 12-size, normally open, pilot-to-close, springbiased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

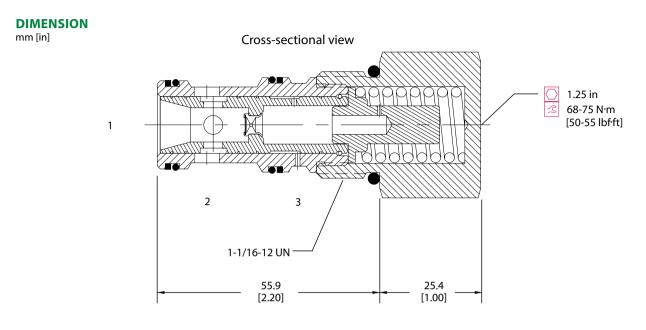

APPLICATION

Common applications include: high-flow pressure reducing valve when using a small relief valve (like CP208-1), or a proportional relief valve (like PRV08-DAC) as a pilot element. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

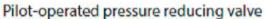

SPECIFICATION

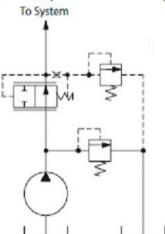
Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	80 l/min
[100 psi]	[21 US gal/min]
Weight	0.26 kg [0.57 lb]
Cavity	CP12-3S

SCHEMATIC

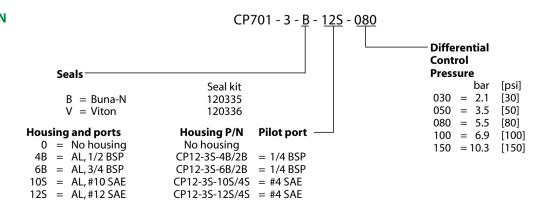


PERFORMANCE CURVE





Logic Elements Catalog Spool Type CP701-3

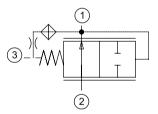


EXAMPLE CIRCUITS

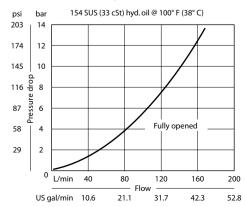
ORDERING INFORMATION

The CP702-3 is a 16-size, normally open, pilot-to-close, spring-biased differential-sensing logic element. It will modulate flow from 2 to 1 based on the spring control pressure, inlet pressure at port 1, and outlet pressure at port 3.

APPLICATION

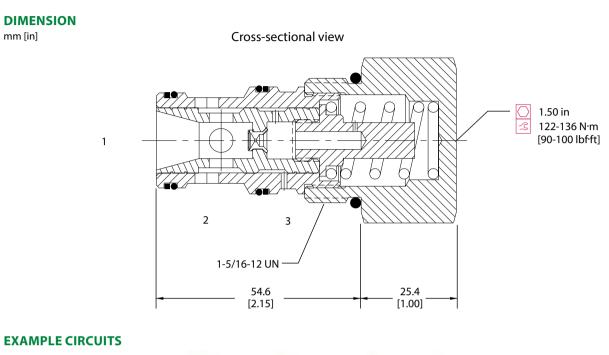

Common applications include: high-flow pressure reducing valve when using a small relief valve (like CP208-1), or a proportional relief valve (like PRV08-DAC) as a pilot element. Effective use of logic elements is a key to designing cost-effective circuits, and is limited only by the imagination of the designer.

LE - Logic Elements CP702-3

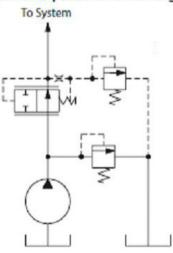

SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	115 l/min
[100 psi]	[30 US gal/min]
Weight	0.38 kg [0.83 lb]
Cavity	SDC16-3S

SCHEMATIC



PERFORMANCE CURVE



Logic Elements Catalog Spool Type CP702-3

Pilot-operated pressure reducing valve

ORDERING INFORMATION

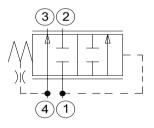
eal Optio	n	
Code	Seal Material Seal kit	
В	Buna	120033
V	Viton	120034

Housings & Ports	Housing P/N	Pilot port
0: Cartridge Only	No Housing	
6B: 3/4 BSP, AL	CP16-3S-6B/2B	1/4 BSP
8B: 1 BSP, AL	CP16-3S-8B/2B	1/4 BSP
12S: #12 SAE, AL	CP16-3S-12S/4S	#4 SAE
16S: #16 SAE, AL	CP16-3S-16S/4S	#4 SAE
Other Housings available		

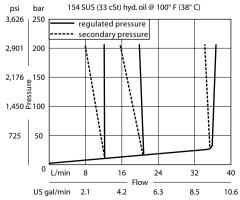
<u>CP702-3</u> - <u>B</u> - <u>16S</u> - <u>080</u>

Differential Control Pressure			
Code	bar	[psi]	
040	2.8	[40]	
080	5.5	[80]	
110	7.6	[110]	
150	10.3	[150]	
190	13.1	[190]	

The CP310-4 is a 10-size, flow control, priority type pressure compensator. Priority-type pressure compensators are four-ported valves that work in series with a fixed or variable control orifice. As with the restrictive-type valves, these valves maintain a constant pressure differential across the control orifice. However, rather than restricting flow when the differential pressure becomes too high, the priority-type pressure compensators open a fourth bypass port for all flow in excess of that demanded by the control orifice. Note that if the bypass port is blocked, the valve will function as a restrictive-type pressure compensator.

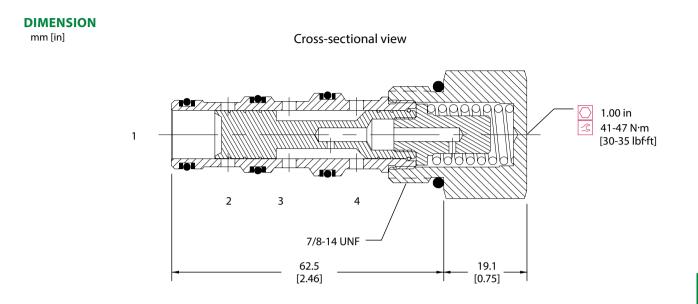

APPLICATION

Common applications include any circuit that requires compensated priority flow going to one actuator (for example, steering or charge pressure to a hydrostatic pump), and a the remaining going to a secondary function (for example, a fan motor). Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures

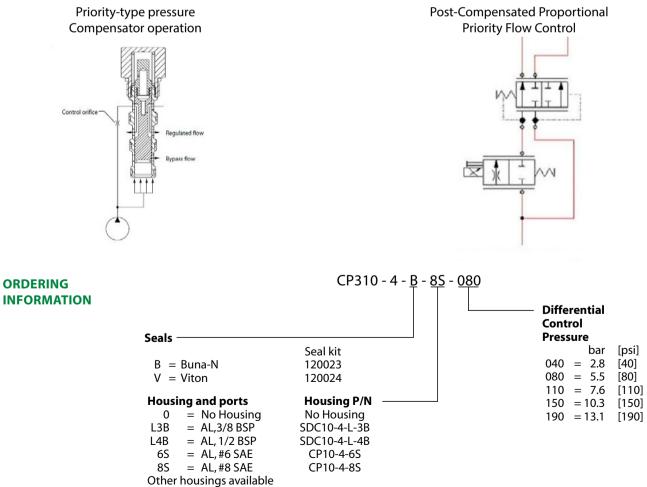

SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	40 l/min
[100 psi]	[11 US gal/min]
Weight	0.15 kg [0.32 lb]
Cavity	SDC10-4

SCHEMATIC



PERFORMANCE CURVE



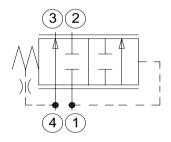
Logic Elements Catalog Pressure Compensator CP310-4

EXAMPLE CIRCUITS

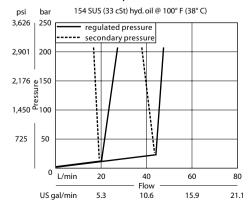
LE - Logic Elements CP310-4

The CP311-4 is a 12-size, flow control, priority type pressure compensator. Priority-type pressure compensators are four-ported valves that work in series with a fixed or variable control orifice. As with the restrictive-type valves, these valves maintain a constant pressure differential across the control orifice. However, rather than restricting flow when the differential pressure becomes too high, the priority-type pressure compensators open a fourth bypass port for all flow in excess of that demanded by the control orifice. Note that if the bypass port is blocked, the valve will function as a restrictive-type pressure compensator.

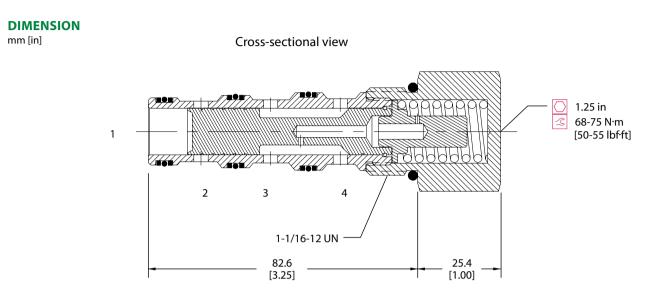
APPLICATION


Common applications include any circuit that requires compensated priority flow going to one actuator (for example, steering or charge pressure to a hydrostatic pump), and a the remaining going to a secondary function (for example, a fan motor). Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures

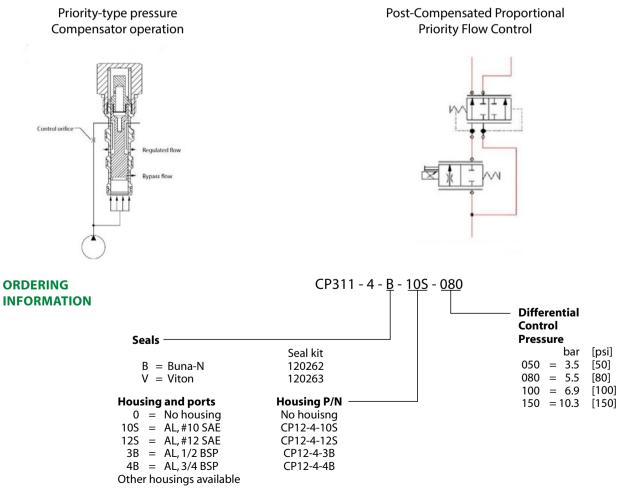
LE - Logic Elements


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	60 l/min
[100 psi]	[16 US gal/min]
Weight	0.31 kg [0.69 lb]
Cavity	CP12-4


SCHEMATIC

PERFORMANCE CURVE

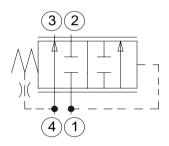


Logic Elements Catalog Pressure Compensator

CP311-4

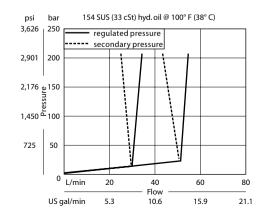
EXAMPLE CIRCUITS

The CP312-4 is a 16-size, flow control, priority type pressure compensator. Priority-type pressure compensators are four-ported valves that work in series with a fixed or variable control orifice. As with the restrictive-type valves, these valves maintain a constant pressure differential across the control orifice. However, rather than restricting flow when the differential pressure becomes too high, the priority-type pressure compensators open a fourth bypass port for all flow in excess of that demanded by the control orifice. Note that if the bypass port is blocked, the valve will function as a restrictive-type pressure compensator.


APPLICATION

Common applications include any circuit that requires compensated priority flow going to one actuator (for example, steering or charge pressure to a hydrostatic pump), and a the remaining going to a secondary function (for example, a fan motor). Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures

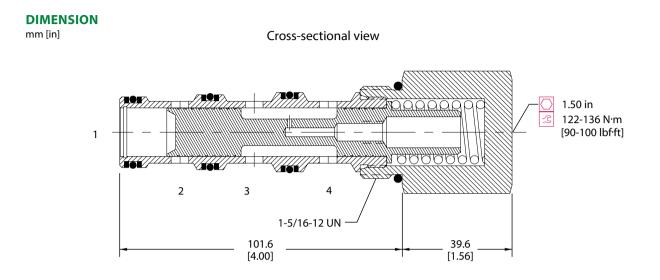
SPECIFICATION


Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	130 l/min
[100 psi]	[34 US gal/min]
Weight	0.60 kg [1.32 lb]
Cavity	CP16-4

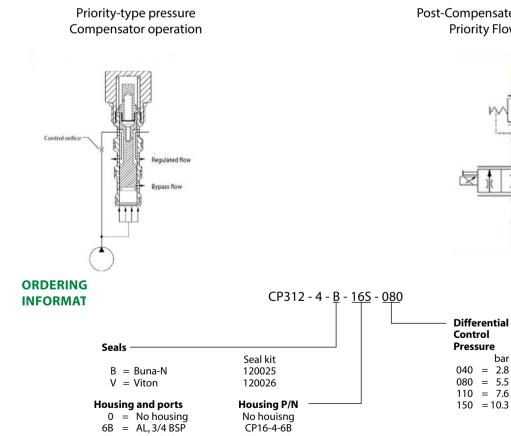
SCHEMATIC

PERFORMANCE CURVE

Theoretical performance

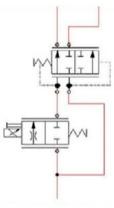


LE - Logic Elements


CP312-4

Logic Elements Catalog Pressure Compensator CP312-4

EXAMPLE CIRCUITS


CP16-4-6B

CP16-4-8B

CP16-4-12S

CP16-4-16S

Post-Compensated Proportional **Priority Flow Control**

bar

[psi]

[40]

[80]

[110]

[150]

8B = AL, 1 BSP

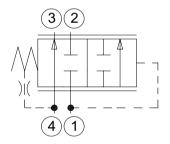
12S = AL, #12 SAE

16S = AL, #16 SAE

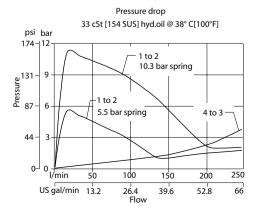
Other housings available

LE - Logic Elements CP312-4

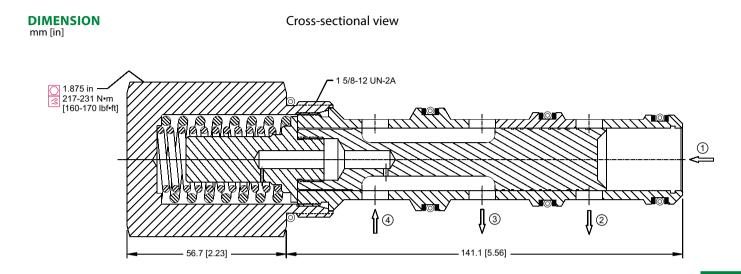
The CP313-4 is a 20-size, flow control, priority type pressure compensator. Priority-type pressure compensators are four-ported valves that work in series with a fixed or variable control orifice. As with the restrictive-type valves, these valves maintain a constant pressure differential across the control orifice. However, rather than restricting flow when the differential pressure becomes too high, the priority-type pressure compensators open a fourth bypass port for all flow in excess of that demanded by the control orifice. Note that if the bypass port is blocked, the valve will function as a restrictive-type pressure compensator.

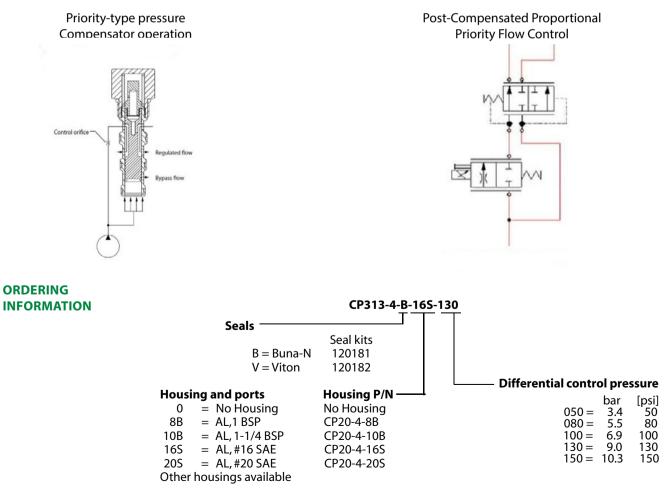

APPLICATION

Common applications include any circuit that requires compensated priority flow going to one actuator (for example, steering or charge pressure to a hydrostatic pump), and a the remaining going to a secondary function (for example, a fan motor). Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	340 l/min
[100 psi]	[90 US gal/min]
Weight	1.30 kg [2.80 lb]
Cavity	SDC20-4


SCHEMATIC

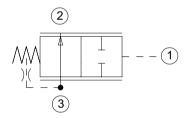

PERFORMANCE CURVE

EXAMPLE CIRCUITS

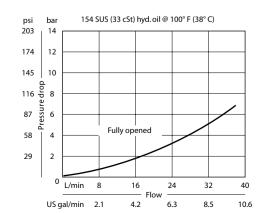
The CP300-4 is a 10-size, flow control, restrictive type pressure compensator. Restrictive-type pressure compensators are three-ported valves that work in series with a fixed or variable control orifice. The pressure compensator is located downstream of the orifice and is spring-biased to an open position as shown in the example circuit. The spool "senses" the pressure on either side of the control orifice and will vary it's restriction in order to maintain a constant pressure differential across the control orifice, hence maintaining a constant flow rate.

APPLICATION

Common applications include any circuit that requires compensated flow control going to one actuator or circuit. Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures

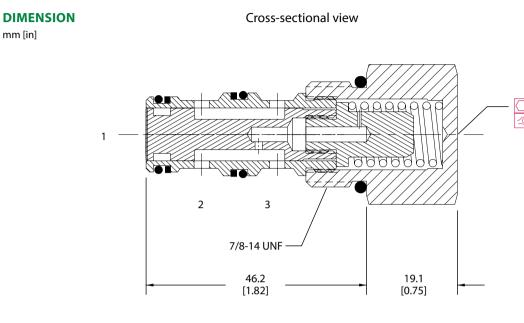

SPECIFICATION

LE - Logic Elements

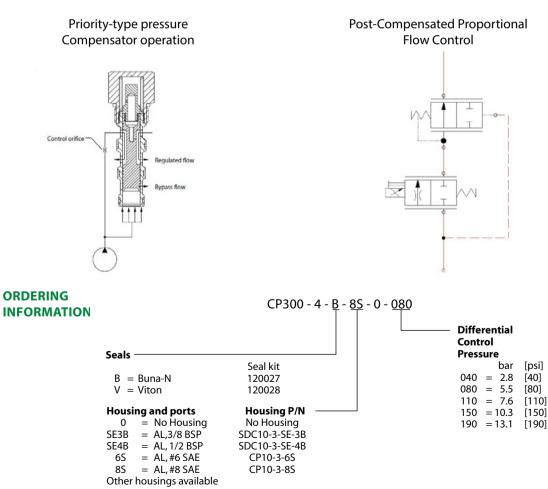

CP300-4

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	40 l/min
[100 psi]	[10.6 US gal/min]
Weight	0.13 kg [0.29 lb]
Cavity	SDC10-3

SCHEMATIC



PERFORMANCE CURVE



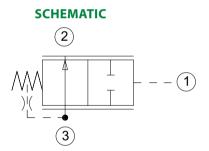
Logic Elements Catalog Pressure Compensator CP300-4

EXAMPLE CIRCUITS

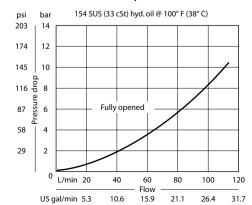
LE - Logic Elements CP300-4

1.00 in

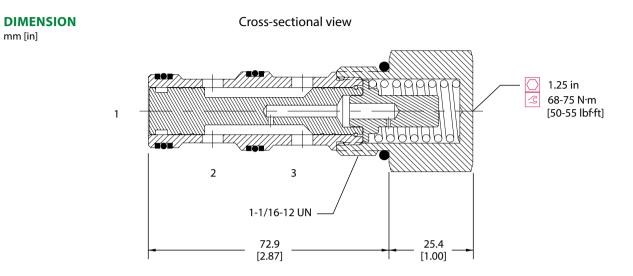
41-47 N·m [30-35 lbf·ft]


The CP301-4 is a 12-size, flow control, restrictive type pressure compensator. Restrictive-type pressure compensators are three-ported valves that work in series with a fixed or variable control orifice. The pressure compensator is located downstream of the orifice and is spring-biased to an open position as shown in the example circuit. The spool "senses" the pressure on either side of the control orifice and will vary it's restriction in order to maintain a constant pressure differential across the control orifice, hence maintaining a constant flow rate.

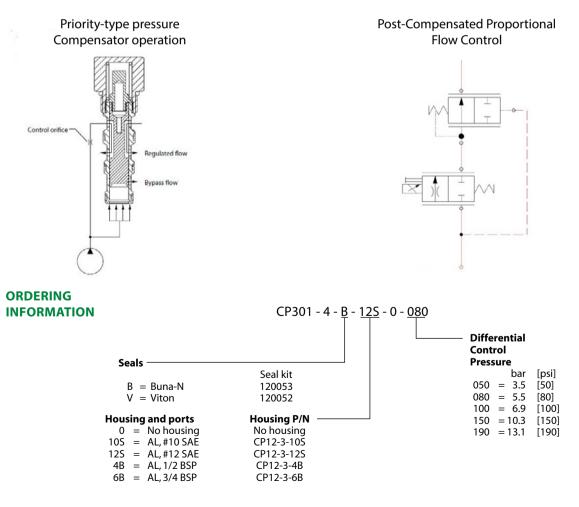
APPLICATION


Common applications include any circuit that requires compensated flow control going to one actuator or circuit. Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures

SPECIFICATION


Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	90 l/min
[100 psi]	[24 US gal/min]
Weight	0.30 kg [0.67 lb]
Cavity	CP12-3

PERFORMANCE CURVE

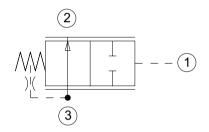


Logic Elements Catalog Pressure Compensator

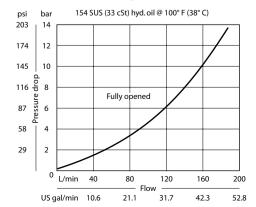
CP301-4

EXAMPLE CIRCUITS

The CP302-4 is a 16-size, flow control, restrictive type pressure compensator. Restrictive-type pressure compensators are three-ported valves that work in series with a fixed or variable control orifice. The pressure compensator is located downstream of the orifice and is spring-biased to an open position as shown in the example circuit. The spool "senses" the pressure on either side of the control orifice and will vary it's restriction in order to maintain a constant pressure differential across the control orifice, hence maintaining a constant flow rate.


APPLICATION

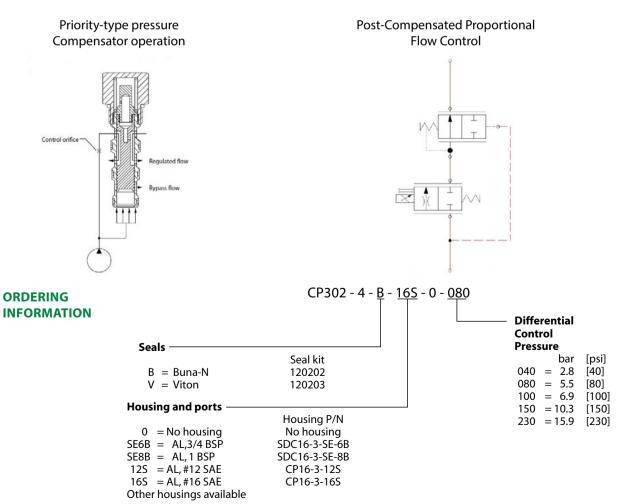
Common applications include any circuit that requires compensated flow control going to one actuator or circuit. Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures


SPECIFICATION

Rated pressure	210 bar [3000 psi]
Rated flow at 7 bar	130 l/min
[100 psi]	[34 US gal/min]
Weight	0.56 kg [1.24 lb]
Cavity	SDC16-3

SCHEMATIC

PERFORMANCE CURVE



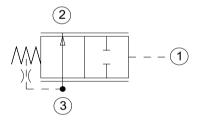
Logic Elements Catalog Pressure Compensator

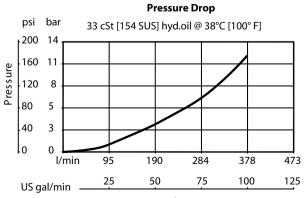
CP302-4

EXAMPLE CIRCUITS

OPERATION

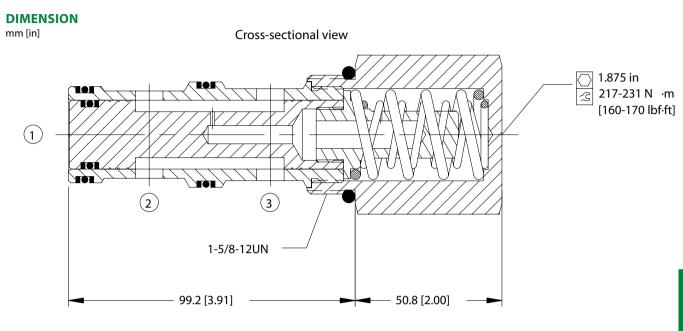
The CP303-4 is a 20-size, flow control, restrictive type pressure compensator. Restrictivetype pressure compensators are three-ported valves that work in series with a fixed or variable control orifice. The pressure compensator is located downstream of the orifice and is spring-biased to an open position as shown in the example circuit. The spool "senses" the pressure on either side of the control orifice and will vary it's restriction in order to maintain a constant pressure differential across the control orifice, hence maintaining a constant flow rate. **APPLICATION**


Common applications include any circuit that requires compensated flow control going to one actuator or circuit. Pressure compensators offer the circuit designer capability to add pressure compensation to any fixed or variable orifice. This ensures that flow, and resulting actuator speed, are maintained regardless of system and working pressures

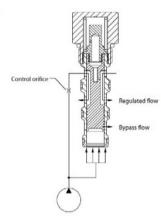

SPECIFICATION

Rated pres	sure	210 bar [3045 psi]					
Rated flow	at 7 bar	284 l/min					
[100 psi]		[75 US gal/min]					
Weight		1.11 kg [2.45 lb]					
Cavity		SDC20-3					

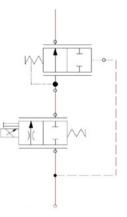
SCHEMATIC


PERFORMANCE CURVE

Theoretical performance



Logic Elements Catalog Pressure Compensator CP303-4



EXAMPLE CIRCUITS

Priority-type pressure Compensator operation

Post-Compensated Proportional Flow Control

ORDERING CP303-4-B-16S-0-150 **INFORMATION** Seals Differential Seal kit Control B = BUNA-N120200 Pressure V = VITON 120201 bar [psi] 050 = 3.4 [50] Housing and ports Housing P/N 080 5.5 [80] 0 = Cartridge only No Body = 100 6.9 [100] = 16S = AL, #16 SAECP20-3-16S 130 9.0 [130] = 20S = AL, #20 SAE CP20-3-20S 150 = 10.3 [150] 8B = AL, 1 BSP CP20-3-3B 10B = AL, 1-1/4 BSPCP20-3-4B

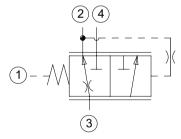
other housings available

OPERATION

The CP310-6 is a 10-size, load sense, priority, static, pressure compensator. The valve will provide on-demand priority flow to port 2 in the required amount (dependent on the load sense pressure on port 1), allowing the excess flow to go to auxiliary functions through port 3.

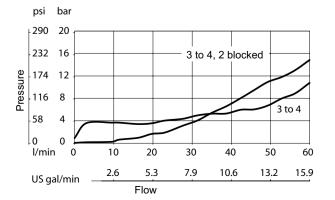
APPLICATION

Common applications include steering circuits that require pre-compensated, priority flow to go to the steering system, and the excess flow will go to an auxiliary function, like a fan motor. To obtain dynamic load sensing (priority type pre-comp) add in orifice between ports 2 and 1 in the manifold. This provides faster response and is commonly used in steering to flush out LS line. See Circuit Example.

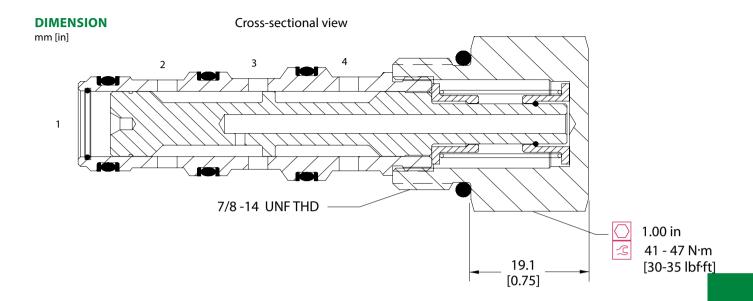

SPECIFICATION

LE - Logic Elements

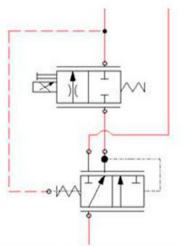
CP310-6

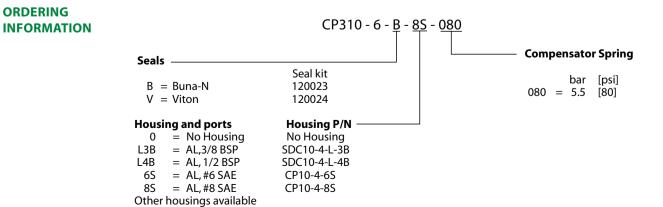

Rated pressure	210 bar [3000 psi]				
Rated flow at 7 bar	40 l/min				
[100 psi]	[11 US gal/min]				
Weight	0.15 kg [0.33 lb]				
Cavity	SDC10-4				

SCHEMATIC



PERFORMANCE CURVE


Theoretical performance Pressure Drop 33 cSt [154 SUS] hyd.oil @ 38°C [100° F]



EXAMPLE CIRCUITS

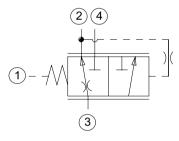
Pre-Compensated Proportional Flow

LE - Logic Elements CP310-6

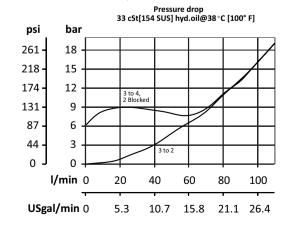
Logic Elements Catalog Pressure Compensator PC12-LPS

OPERATION

The PC12-PS is a 12-size, load sense, priority, static, pressure compensator. The valve will provide on-demand priority flow to port 2 in the required amount (dependent on the load sense pressure on port 1), allowing the excess flow to go to auxiliary functions through port 3.

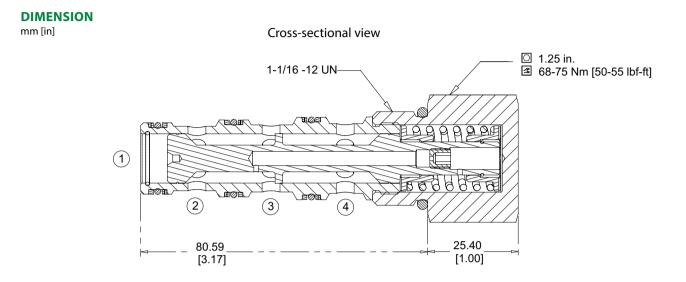

APPLICATION

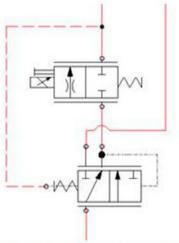
Common applications include steering circuits that require pre-compensated, priority flow to go to the steering system, and the excess flow will go to an auxiliary function, like a fan motor. To obtain dynamic load sensing (priority type pre-comp) add in orifice between ports 2 and 1 in the manifold. This provides faster response and is commonly used in steering to flush out LS line. See Circuit Example.


SPECIFICATION

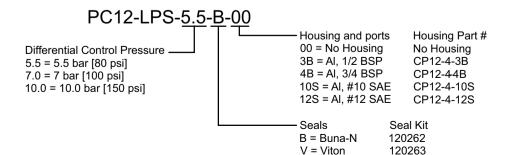
Rated pressure	210 bar [3045 psi]				
Rated flow at 7 bar	75 l/min				
[100 psi]	[20 US gal/min]				
Weight	0.31 kg [0.68 lb]				
Cavity	CP12-4				

SCHEMATIC


PERFORMANCE CURVE


Theoretical performance

Logic Elements Catalog Pressure Compensator PC12-LPS



EXAMPLE CIRCUITS

Pre-Compensated Proportional Flow

ORDERING INFORMATION

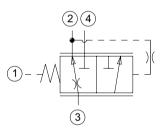
Logic Elements Catalog Pressure Compensator PC16-LPS

OPERATION

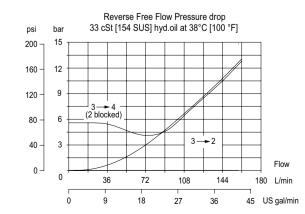
The CP312-6 is a 16-size, load sense, priority, static, pressure compensator. The valve will provide on-demand priority flow to port 2 in the required amount (dependent on the load sense pressure on port 1), allowing the excess flow to go to auxiliary functions through port 3.

APPLICATION

Common applications include steering circuits that require pre-compensated, priority flow to go to the steering system, and the excess flow will go to an auxiliary function, like a fan motor. To obtain dynamic load sensing (priority type pre-comp) add in orifice between ports 2 and 1 in the manifold. This provides faster response and is commonly used in steering to flush out LS line. See Circuit Example.

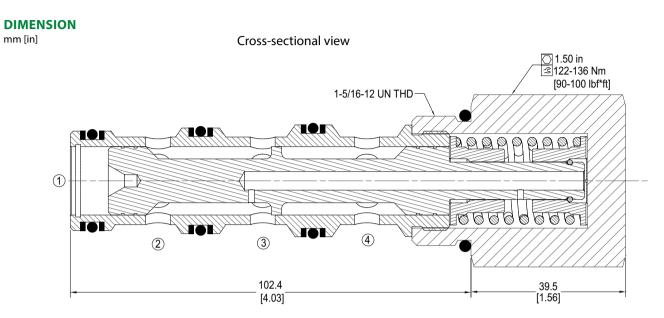

SPECIFICATION

LE - Logic Elements

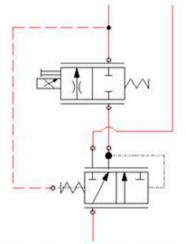

PC16-LPS

Rated pressure	210 bar [3045 psi]				
Rated flow at 7 bar	114 l/min				
[100 psi]	[30 US gal/min]				
Weight	0.63 kg [1.39 lb]				
Cavity	CP16-4				

SCHEMATIC



PERFORMANCE CURVE


LE - 80

Logic Elements Catalog Pressure Compensator PC16-LPS

EXAMPLE CIRCUITS

Pre-Compensated Proportional Flow

ORDERING **INFORMATION**

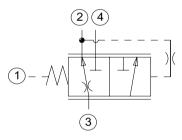
			<u>PC16-L</u>	.PS	-)	<u>(X -)</u>	<u>(- 00</u>
Pressure Com	pensate	or,	16 size				
Load Sense, F	Priority,	Sta	atic	1			
	Compe	ens	ator Spring				
	Code	ode Shift Pressure					
	5.5	5.5 Bar (80 psi)					
	10	10 Bar (150 psi)					
	Seal O	Seal Option					
	Cod	Code Seal Material		Sea	l kit		
	В	Buna-N		120	025]
	v		Viton	1200	026		

Housings & Ports	Housing P/N				
00: Cartridge Only	No Body				
6B: 3/4 BSP, AL	CP16-4-6B				
8B: 1 BSP, AL	CP16-4-8B				
12S: #12 SAE, AL	CP16-4-12S				
16S: #16 SAE, AL CP16-4-16S					
Other housings available					

OPERATION

The CP313-6 is a 20-size, load sense, priority, static, pressure compensator. The valve will provide on-demand priority flow to port 2 in the required amount (dependent on the load sense pressure on port 1), allowing the excess flow to go to auxiliary functions through port 3.

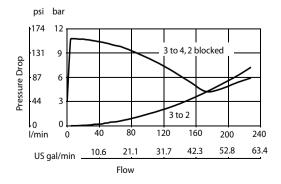
APPLICATION


Common applications include steering circuits that require pre-compensated, priority flow to go to the steering system, and the excess flow will go to an auxiliary function, like a fan motor. To obtain dynamic load sensing (priority type pre-comp) add in orifice between ports 2 and 1 in the manifold. This provides faster response and is commonly used in steering to flush out LS line. See Circuit Example.

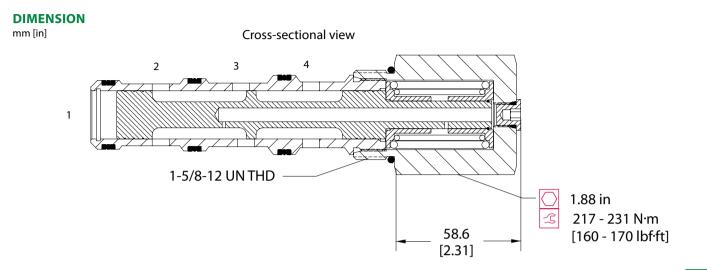
LE - Logic Elements CP313-6

51	PE	CI	FI	С	A1	[]	0	Ν		

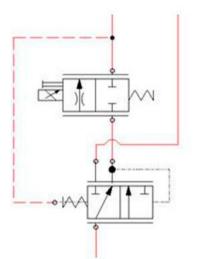
Rated pressure	210 bar [3000 psi]				
Rated flow at 7 bar	200 l/min				
[100 psi]	[53 US gal/min]				
Weight	1.33 kg [2.93 lb]				
Cavity	SDC20-4				

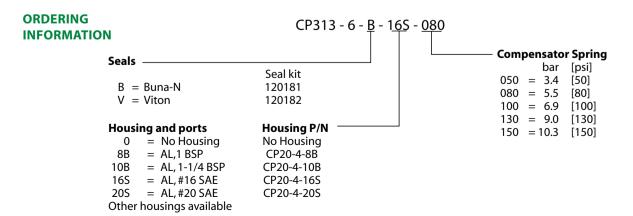

SCHEMATIC

PERFORMANCE CURVE


Theoretical performance

Pressure Drop 33 cSt [154 SUS] hyd.oil @ 38° C [100° F]




Logic Elements Catalog Pressure Compensator CP313-6

EXAMPLE CIRCUITS

Pre-Compensated Proportional Flow

Logic Elements Catalog Notes