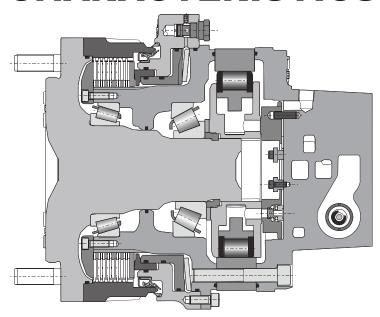

MW14 HYDRAULIC MOTORS

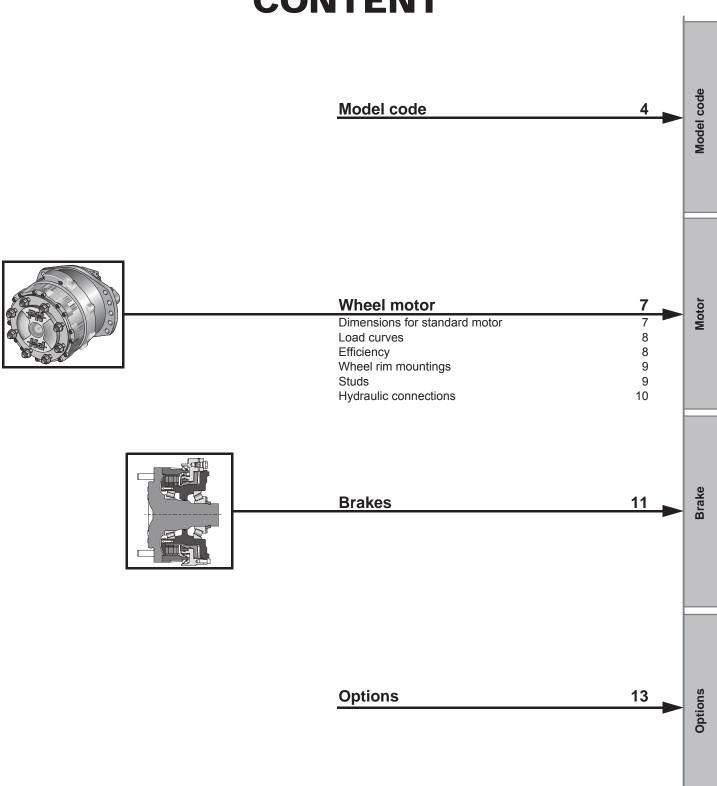


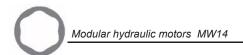
TECHNICAL CATALOG

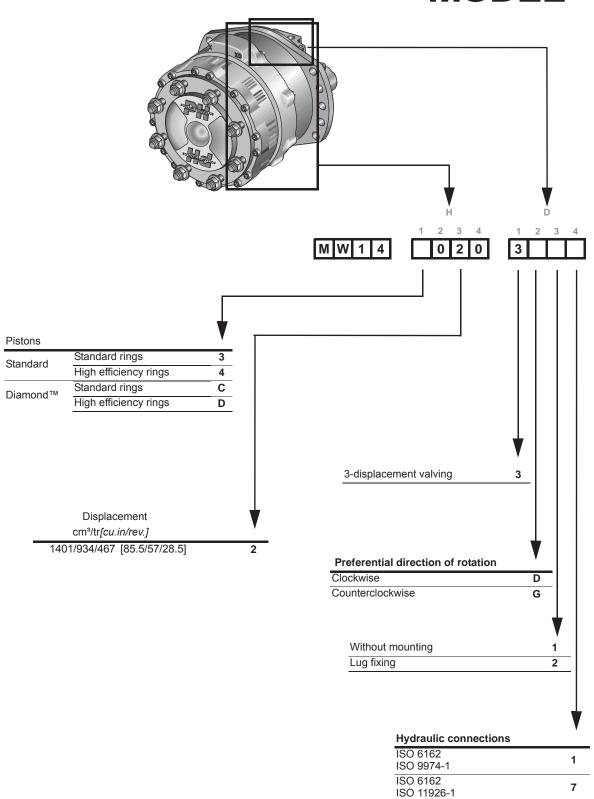
CHARACTERISTICS

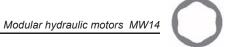
3-displacement motor

				0	2	3
		Displacement	cm³/tr	1 401	934	467
			[cu.in/rev.]	[85,4]	[57,0]	[28,5]
Cams	2	Th. torque at 100 bar	Nm	2 230	1 486	743
	_	Th. torque at 1000 PSI	[lb.ft]	[1 133]	[755]	[378]
		Max.speed	tr/min <i>[RPM]</i>	120	145	175
		Max.power	kW	50	40	33
		max.power	[HP]	[67]	[54]	[44]
		Max. pressure	bar		450	
		maxi procodio	[PSI]		[6 530]	

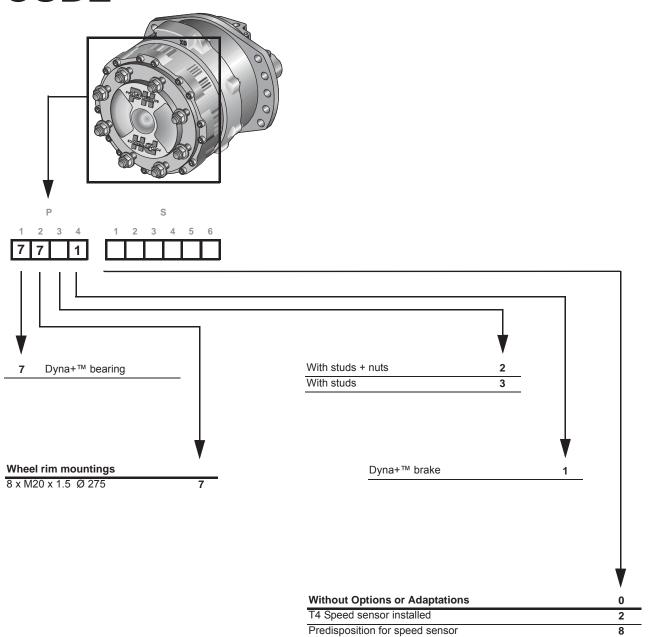

For other cams: Please contact your Poclain Hydraulics application engineer.


Contact your Poclain Hydraulics application engineer to find out how the displacement shift from the third to the second displacement is controlled and to find out transmission capabilities in terms of displacement shift when the vehicle is in motion.

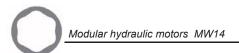

CONTENT



07/04/2017



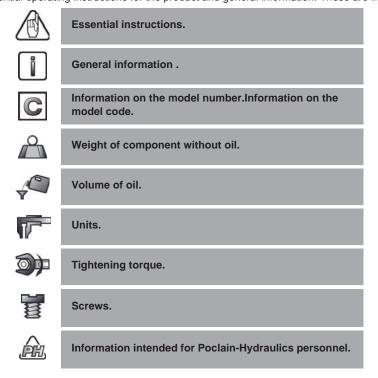
MODEL



CODE

TR Speed sensor installed

07/04/2017


Methodology:

This document is intended for manufacturers of machines that incorporate Poclain Hydraulics products. It describes the technical characteristics of Poclain Hydraulics products and specifies installation conditions that will ensure optimum operation. This document includes important comments concerning safety. They are indicated in the following way:

Safety comment.

This document also includes essential operating instructions for the product and general information. These are indicated in the following way:

The views in this document are created using metric standards. The dimensional data is given in mm and in inches (inches are between brackets and italic)

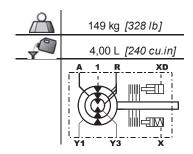
Associated documents

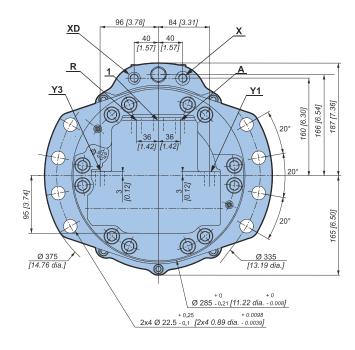
Document type

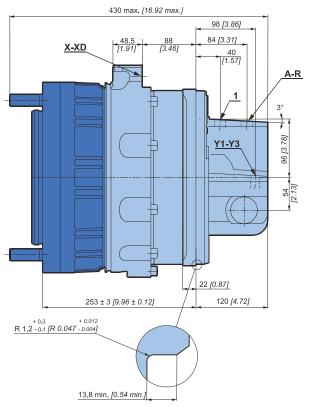
Reneric installation

N°

801478197L

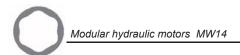

Poclain Hydraulics Patents


Document type	N°
MW motor	FR2796992
MW motor	US6347572
Dyna +™ brake	FR2796886
Dyna +™ brake	US6357558
Dyna +™ brake	FR2797008



WHEEL MOTOR

Dimensions for standard motor

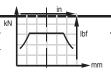


07/04/2017

7

Motor

Brake

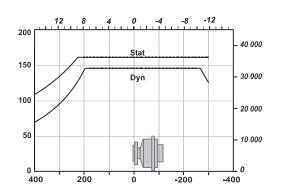

Load curves

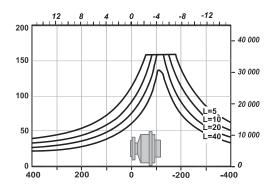
Permissible radial loads

Test conditions : Static : 0 tr/min [0 RPM] 0 bar [0 PSI]

Dynamic: 0 tr/min [0 RPM], code 2 displacement, without

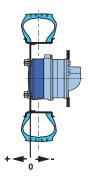
axial load at max. torque

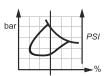


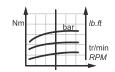

Service life of bearings

Test conditions

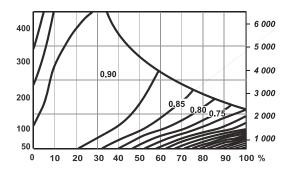
L: Millions B10 revolutions at 150 bars (average pressure), with 25 cSt fluid, code 2 displacement, without axial load.

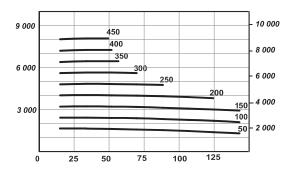



The service life of the components is influenced by the pressure. You must check that the combination of forces applied (Axial load / Radial load) is compatible with the permissible loads for the components, and that the resulting service lives of these components complies with the application's specifications. For an accurate calculation, consult your Poclain Hydraulics application engineer.

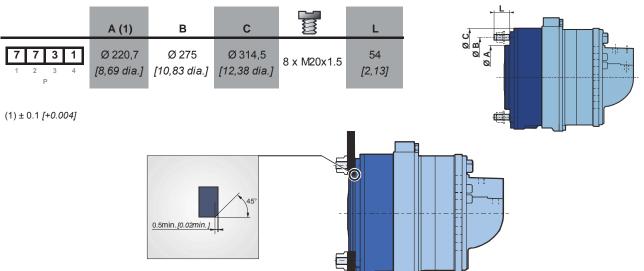


Efficiency


Overall efficiency


Average values given for guidance for code 2 displacement after 100 hours of operation with HV46 hydraulic fluid at 50°C [122°F].

Actual output torque



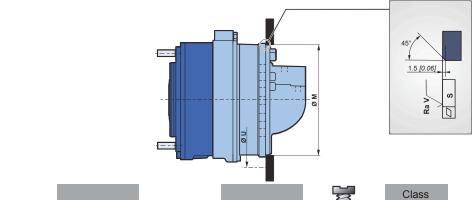
For a precise calculation, consult your Poclain Hydraulics application engineer.

Wheel rim mountings

Studs

		С	С					□ (*)
	8	min.	max.	D		Class	(1)	(2)
Studs	M20x1.5	3,5 [0,14]	27 [1,06]	25 [0,98]	- D - C -	12,9	600 [442,5]	770 [567,9]

(*) The tightening torques are given for the indicated loads.


(1) Wheel rim: Suggested tightening torque for wheel rim mountings (Re steel disc > 240 N/mm² [>34 800 PSI]).

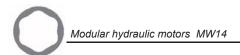
(2) Standard: Suggested tightening torque in other cases (Re steel flange > 360 N/mm² [>52 215 PSI])

Chassis mountings

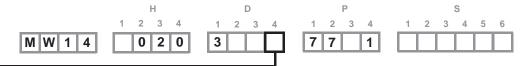
	ØM (1)	ØU	S	Ra V		Class	(*)
	330	335	0,2	12,5µm	2x4	8,8	410 N.m
[12,99]	[13,19]	[0,008]	[0,49µin]	M20	0,0	[302,4 lb.ft]	

^{+ 0} - 0.21 *[- 0.008]*

The tightening torques are given for the indicated loads.



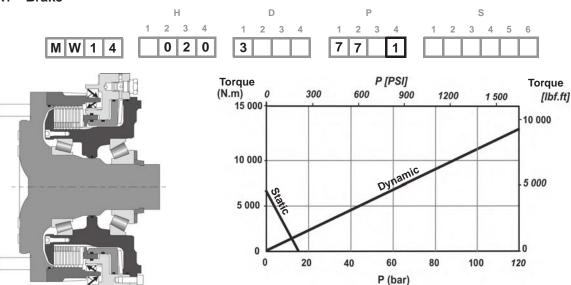
Take care over the immediate environment of the connections.



For other chassis mounting possibilities, please consult your Poclain Hydraulics engineer.

Motor

Hydraulic connections


	Old standards	Standards	Power supply	Case drain	Return Power supply	1 st or 3 rd displacement control	Control of parking break	Control of service break
			Α	1	R	Y1-Y3	X	XD
	ISO 6162	ISO DP6162	DN 19 PN400		DN 19 PN400			
1	DIN 3852	ISO 9974-1		M18 x 1.5		M16 x 1.5	M16 x 1.5	M14 x 1.5
	ISO 6162	ISO DP6162	DN 19 PN400		DN 19 PN400			
7	SAEJ514	ISO 11926-1		3/4" 16 UNF		3/4" 16 UNF	3/4" 16 UNF	9/16" 18 UNF

To find the connections' tightening torques, see the brochure "Installation guide" N° 801478197L.

You are strongly advised to use the fluids specified in brochure "Installation guide" N° 801478197L.

BRAKES

DYNA+™Brake

Brake operation

This mutli-disk brake operates in two distinct ways:

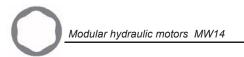
- Either by an absence of pressure (static braking): The spring applies a force to the static piston that is transmitted to the dynamic piston, which clamps the fixed and free disks, preventing the shaft from turning. Braking torque decreases linearly as a function of unlocking pressure.
- Or by braking pressure (dynamic braking). The braking command creates a pressure on the dynamic braking piston, which clamps the fixed and free disks, preventing the shaft from turning. Braking torque increases linearly as a function of the unlocking pressure.

Avdraulically controlled dynamic braking

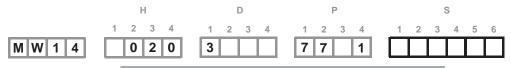
Hydraulically controlled dynamic braking	
Max. permissible brake torque	13 100 Nm [9 660 lb.ft]
Pressure to obtain max. permissible brake torque	120 bar <i>[1 740 PSI]</i>
Volume required for braking	15 cm³ [0,92 cu.in]
Mini. irrigation flow rate for dynamic braking	4 L/min [1,06 GPM]
Hydraulically controlled parking brake	
Parking brake torque (new brakes)	6 810 Nm [5 020 lb.ft]
Parking brake torque (after 500 dynamic braking)	5 450 Nm [4 020 lb.ft]
Parking brake torque mini. requiring renovation	4 850 Nm [3 580 lb.ft]
Max. release brake pressure	30 bar <i>[435 PSI]</i>
Volume for brake release	67 cm³ [4,09 cu.in]
Inlet conditions for brake release in towing (Flow rate of 2 L/min)	14 bar <i>[203 PSI]</i>
Emergency dynamical braking torque at 0 bar to the case (new brakes)	5 700 Nm [4 200 lb.ft]
Max. energy dissipation	583 kJ

Indicative values coming from fly-wheel test bench. Braking performance must be performed on machine by the manufacturer.

Brake release pressure vented.

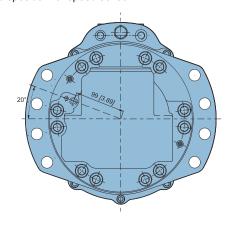


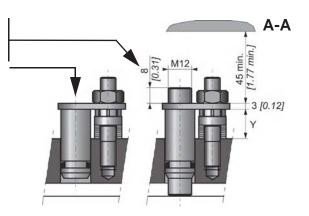
Do not use both dynamic and parking brake simultaneously.


The use of certain oils, may not offer the characteristics stated above. Consult your Poclain Hydraulics sales engineer.

07/04/2017 11

OPTIONS



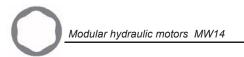


You can accumulate more than one optional part. Consult your Poclain Hydraulics sales engineer.

2 - S - Q - 8 - Installed speed sensor or predisposition

Designation	C
T4 Speed sensor (without rotation direction)	2
TR Speed sensor (digital rotation direction)	S
TD speed sensor (two phase shifted frequencies)	Q
Predisposition for speed sensor	8

Max. length Y= 15.2 Standard number of pulses per revolution= 56



Look at the "Mobile Electronic" N° A01889D technical catalogue for the sensor specifications and its connection.

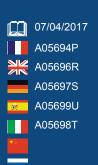
To install the sensor, see the "Installation guide" brochure No. 801478197L.

07/04/2017

Model code

MOTOL

rake


Options

Poclain Hydraulics reserves the right to make any modifications it deems necessary to the products described in this document without prior notification. The information contained in this document must be confirmed by Poclain Hydraulics before any order is submitted.

Illustrations are not binding.

The Poclain Hydraulics brand is the property of Poclain Hydraulics S.A.

