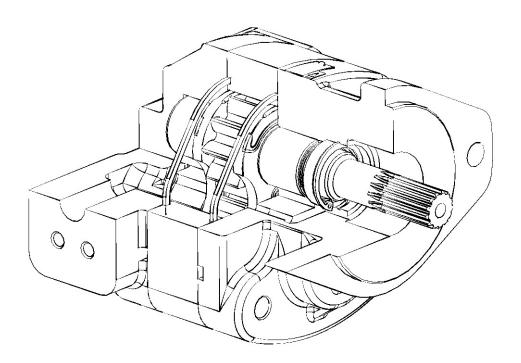


CAST IRON GEAR PUMPS AND MOTORS Cascade Group 3 | Technical Information

History of revisions

Date	Page	Changed	Rev.
March 2015	-	First edition	-
September 2016	-	Second edition	-

© 2016 Turolla TM. All rights reserved.


Turolla accepts no responsibility for possible errors in catalogs, brochures and other printed material. Turolla reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Danfoss, Turolla, Turolla OpenCircuitGear, OpenCircuitGear, Fast Lane and PLUS+1 are trademarks of the Danfoss Group.

Contents

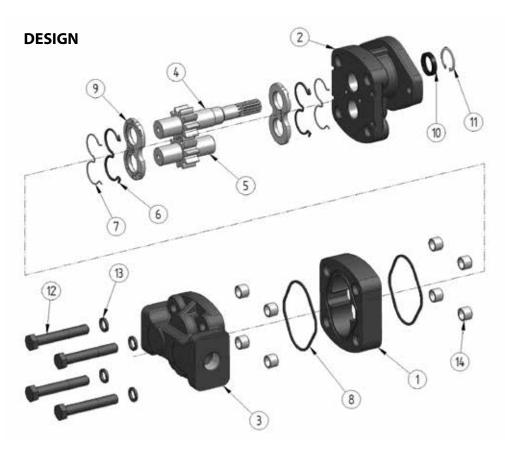
General Information

- 4 Description
- 5 Formulas used for calculation
- 6 Application parameters
- 9 Technical data
- 10 Flow rate and power curves
- 13 Model code
- 18 Flange types
- 19 Shaft types
- 21 Combinations of flanges and shafts
- 22 Port types
- 24 Outrigger bearings
- 25 Aux pads
- 26 Configuration examples

Description

Overview

Cascade fixed displacement gear pump and motor has been specifically designed for demanding mobile equipment applications where maximum performance is required at peak power levels and operating temperatures. The design integrates cast iron construction with pressure balanced thrust plates to deliver consistent efficiency across the entire operating range of pressure, speed, and temperature.


The three structural members of the pump and motor are: flange, body and cover, are made of high-strength cast iron. Cast iron provides contamination resistance, thermal stability and the strength needed for consistently high levels of performance and durability needed in demanding off highway applications.

Sleeve bushings are pressed in the flange and cover and have been optimized to provide long life in low viscosity, high pressure conditions. Axial pressure balance is ensured by aluminium alloy thrust plates with integrated pressure seals.

In order to accomodate the strictest demands for external radial and axial force, most of the flange types are available also with the optional integrated outrigger bearings.

Cascade Group 3 pumps can be coupled together to produce tandem, triple and even quadruple units. The interconnecting chambers can accommodate fluid flow between sections and allow the number of inlet connections to be minimized.

Cascade Group 3 pumps and motors cover the wide range of displacements from 17 to 71 cm³.

- 1. Body
- 2. Flange
- 3. Cover
- 4. Drive gear
- 5. Driven gear
- 6. Pressure seal
- 7. Anti-extrusion ring
- 8. O-ring
- 9. Pressure plates
- 10. Shaft seal
- 11. Snap ring
- 12. Assembly screws
- 13. Spring washer
- 14. Centering tube

Formulas used for calculation

Determination of nominal pump sizes

Use these formula to determine the nominal pump size for a specific application:

Based	on SI	units	

Based on US units

Output flow: $Q = \frac{Vg \cdot n \cdot \eta_v}{1000}$ I/min $Q = \frac{Vg \cdot n \cdot \eta_v}{231}$ [US gal/min]

Input torque: $M = \frac{Vg \cdot \Delta p}{20 \cdot \pi \cdot \eta_m}$ N·m $M = \frac{Vg \cdot \Delta p}{2 \cdot \pi \cdot \eta_m}$ [lbf·in]

Input power:	$P = \frac{M \cdot n}{M \cdot n}$	Q•Δp	kW	Р	_	M•n	_ Q•∆p	[hp]
mpat power.	9550	600 • η _t		1	_	63.025	1714•η,	[iib]

Variables: SI units [US units]

$V_g =$	Displacement per rev.	cm³/rev [in³/rev]
р _{нр} =	Outlet pressure	bar [psi]
$p_{ND} =$	Inlet pressure	bar [psi]
Δp =	$p_{out} - p_{IN}$	bar [psi]
n =	Speed	min⁻¹ (rpm)
$\eta_v =$	Volumetric efficiency	
η _m =	Mechanical (torque) eff	iciency
η_t =	Overall efficiency ($\eta_v \cdot r$] _m)

Application parameters

Hydraulic fluids

Ratings and data for Cascade gear pumps are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of internal components. They include:

- Hydraulic fluids following DIN 51524, part 2 (HLP) and part 3 (HVLP) specifications
- API CD engine oils conforming to SAE J183
- M2C33F or G automatic transmission fluids
- Certain agricultural tractor fluids

Use only clean fluid in the pump and hydraulic circuit.

Caution

Never mix hydraulic fluids.

Please see Turolla publication Hydraulic Fluids and Lubricants Technical Information, **L1021414** for more information.

Temperature and Viscosity

Temperature and viscosity requirements must be concurrently satisfied. Use petroleum / mineral-based fluids.

High temperature limits apply at the inlet port to the pump. The pump should run at or below the maximum continuous temperature. The peak temperature is based on material properties. Don't exceed it.

Cold oil, generally, doesn't affect the durability of pump components. It may affect the ability of oil to flow and transmit power. For this reason, keep the temperature at 16 °C [60 °F] above the pour point of the hydraulic fluid.

Minimum (cold start) temperature relates to the physical properties of component materials. Minimum viscosity occurs only during brief occasions of maximum ambient temperature and severe duty cycle operation. You will encounter maximum viscosity only at cold start. During this condition, limit speeds until the system warms up. Size heat exchangers to keep the fluid within these limits. Test regularly to verify that these temperatures and viscosity limits aren't exceeded. For maximum unit efficiency and bearing life, keep the fluid viscosity in the recommended viscosity range.

Fluid viscosity

Temperature

riala fiscosicy			remperature		
Maximum (cold start)	24	1200 [5500]	Minimum (cold start)		-20 [-4]
Recommended range	mm²/s [SUS]	20-80 [97-365]	Maximum continuous	°C [°F]	90 [194]
Minimum	[303]	10 [60]	Peak (intermittent)	[']	110 [230]

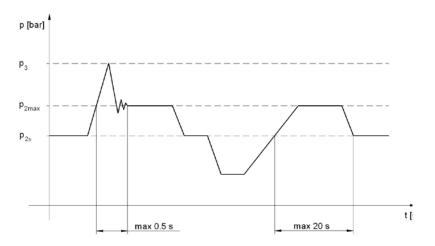
Filtration

Filters

Use a filter that conforms to Class:	21/18/15	(for pressure p2 < 200 bar)	10 (for pressure p2 < 200 bar)
	20/17/14	(for pressure p2 > 200 bar)	8 (for pressure p2 > 200 bar)
	according	to ISO 4406	according to NAS 1683

Selecting a filter

- When selecting a filter, please consider:
- contaminant ingression rate (determined by factors such as the number of actuators used in the system)
- generation of contaminants in the system
- required fluid cleanliness
- desired maintenance interval
- filtration requirements of other system components


 β_{v} ratio is a measure of filter efficiency defined by ISO 4572. It is the ratio of the number of particles greater than a given diameter (" $_{x}$ " in microns) upstream of the filter to the number of these particles downstream of the filter.

Fluid cleanliness level and β_{v} ratio

Fluid cleanliness level (per ISO 4406)	21/18/15 or better (for pressure p2 < 200 bar)
	20/17/14 or better (for pressure p2 > 200 bar)
β_{x} ratio (suction filtration)	$\beta_{\scriptscriptstyle 35\text{-}45}$ = 75 and $\beta_{\scriptscriptstyle 10}$ = 2
$\beta_{\rm x}$ ratio (pressure or return filtration)	$\beta_{10} = 75$
Recommended inlet screen size	100-125 μm [0.004-0.005 in]

The filtration requirements for each system are unique. Evaluate filtration system capacity by monitoring and testing prototypes.

Pressure load

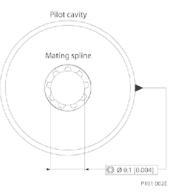
p2_ rated pressure

p₃

the average, regularly occuring operating pressure that should yield satisfactory product life. The maximum machine load demand determines rated pressure. For all systems, the load should be below this pressure.

p2_{max} intermittent pressure maximum pressure permissible for a short time, max. 20s. at a time peak pressure the highest intermittent pressure allowed. The relief valve

overshoot (reaction time) or directional valve midpositon usually determines peak pressure. It is assumed to occur for less that 100ms at a time.



Pump drive

Shaft options for Cascade gear pumps include tapered, splined, or parallel shafts. They are suitable for a wide range of direct and indirect drive applications for radial and thrust loads.

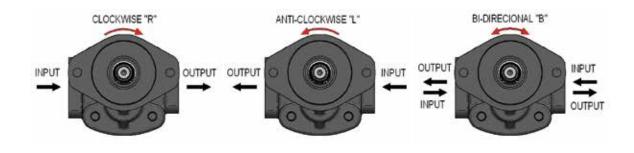
Plug-in drives, acceptable only with a splined shaft, can impose severe radial loads when the mating spline is rigidly supported. Increasing spline clearance does not alleviate this condition.

spline and pilot diameter is within 0.1 mm [0.004 in]. Lubricate the drive by flooding it with oil. A 3-piece coupling minimizes radial or thrust shaft loads.

Caution

In order to avoid spline shaft damages it is recommended to use carburised and hardened steel couplings with 80-82 HRA surface hardness.

Allowable **radial shaft loads** are a function of the load position, load orientation, and operating pressure of the hydraulic pump. All external shaft loads have an effect on bearing life, and may affect pump performance.


In applications where external shaft loads can't be avoided, minimize the impact on the pump by optimizing the orientation and magnitude of the load and selecting a pump with an appropriate outrigger bearing. Don't use splined shafts for belt or gear drive applications. A spring-loaded belt tension-device is recommended for belt drive applications to avoid excessive tension.

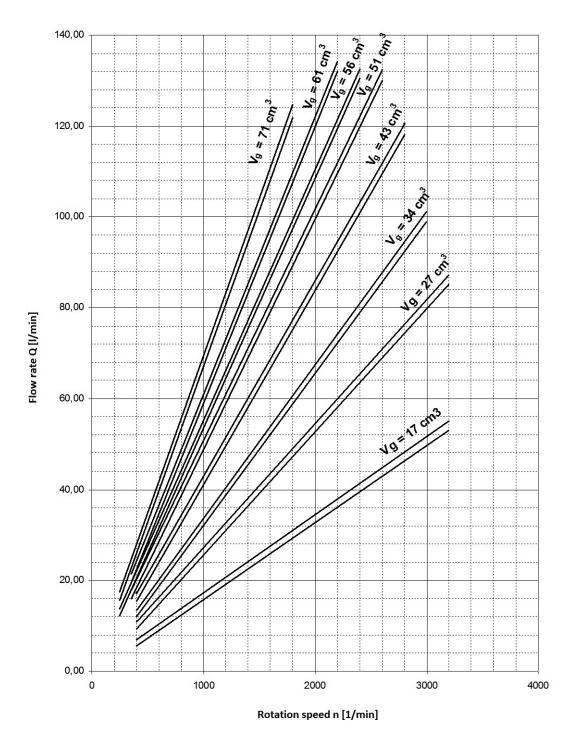
Direction of Rotation

Determine direction of rotation by looking at the drive shaft. The pump can only be used in the specified direction of rotation.

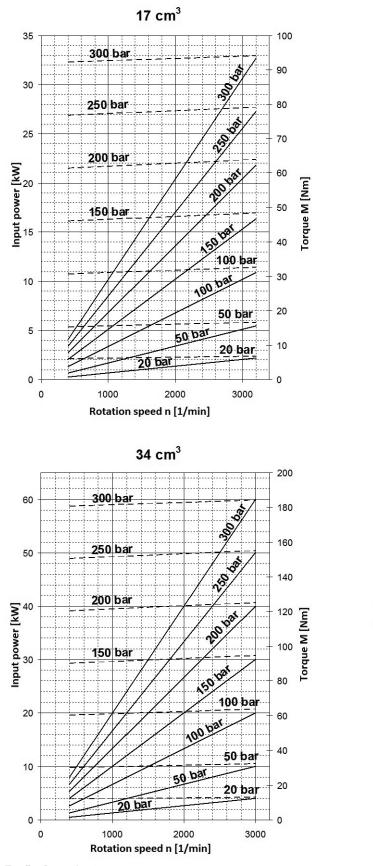
Bidirectional pumps and motors

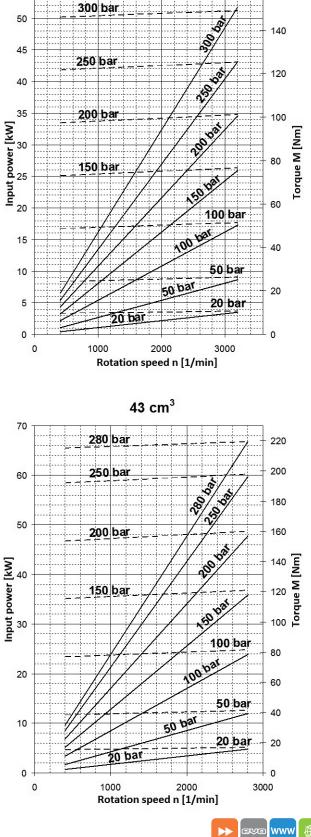
The pumps and motors with the possibility of bidirectional rotation have a different internal arrangement requiring drainage. Two types of drain are used - internal and external. The internal drainage is always interconnected with the low pressure side outlet by means of valves. The external drainage is a port located in the cover opposite the driven gear.

Technical data

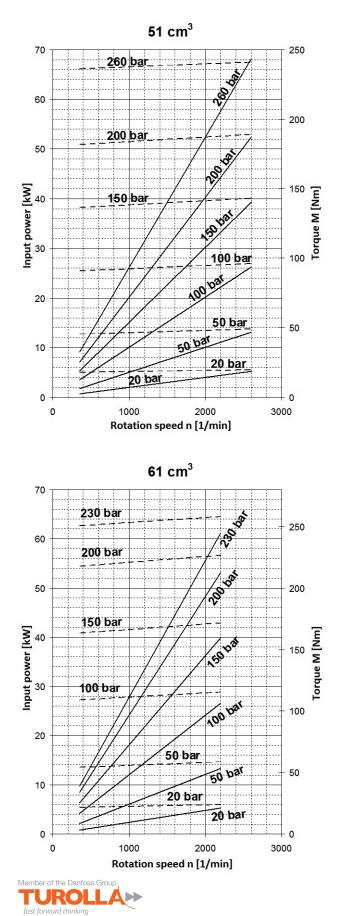

Nominal Size Parame	ters	Sym.	Unit	Cascade3 17	Cascade3 22	Cascade3 27	Cascade3 34	Cascade3 43	Cascade3 51	Cascade3 56	Cascade3 61	Cascade3 71
Actual displacement		Vg	cm3/rev [in3/rev]	17.39 [1.061]	22.46 [1.370]	27.53 [1.679]	34.05 [2.078]	43.47 [2.653]	51.44 [3.139]	55.79 [3.405]	61.59 [3.758]	71.01 [4.333]
	nominal	nn	min -1 [rpm]					1500				
Rotation speed	minimum	nmin	min -1 [rpm]	400	400	400	400	400	350	350	350	350
	maximum	nmax	min -1 [rpm]	3200	3200	3200	3000	2800	2600	2400	2200	1800
Pressure at inlet	minimum	p1min	bar [psi]	-0.3 [-4.3]								
Pressure at iniet	maximum	p1max	bar [psi]		3 [43.5]							
	max. continuous	p2n	bar [psi]	300 [4350]	300 [4350]	300 [4350]	300 [4350]	280 [4060]	260 [3770]	250 [3620]	230 [3330]	210 [3040]
Pressure at outlet *	maximum	p2max	bar [psi]	320 [4640]	320 [4640]	320 [4640]	320 [4640]	300 [4350]	280 [4060]	270 [3900]	250 [3620]	230 [3330]
	peak	p3	bar [psi]	330 [4780]	330 [4780]	330 [4780]	330 [4780]	310 [4500]	290 [4200]	280 [4060]	260 [3770]	240 [3480]
Nominal flow rate (m p2n	in.) at nn and	Qn	l/min [US gal/ min]	23.5 [6.2]	31 [8.2]	38 [10]	48 [12.7]	61.3 [16.2]	72.5 [19.1]	78.7 [20.8]	86.8 [22.9]	100.1 [26.4]
Maximum flow rate a p2max	t nmax and	Qmax	l/min [US gal/ min]	54.5 [14.4]	70.4 [18.6]	86.3 [22.8]	100.1 [26.4]	119.3 [31.5]	131.1 [34.6]	131.2 [34.6]	132.8 [35.1]	125.3 [33.1]
Nominal input power and p2n	(max.) at nn	Pn	kW [HP]	16.1 [21.6]	20.3 [27.2]	24.9 [33.4]	30.2 [40.5]	36 [48.2]	39.5 [53]	41.2 [55.2]	41.9 [56.2]	44.1 [59.1]
Maximum input powe p2max	er at nmax and	Pmax	kW [HP]	33.6 [45]	43.5 [58.3]	53.3 [71.5]	61.8 [82.8]	69 [92.5]	70.8 [95]	68.3 [91.6]	64 [85.8]	55.6 [74.5]
Weight		m	kg [lb]	15.3 [33.7]	15.6 [34.4]	15.7 [34.6]	16.2 [35.7]	16.7 [36.8]	17.1 [37.7]	17.3 [38.1]	17.6 [38.8]	18.1 [39.9]

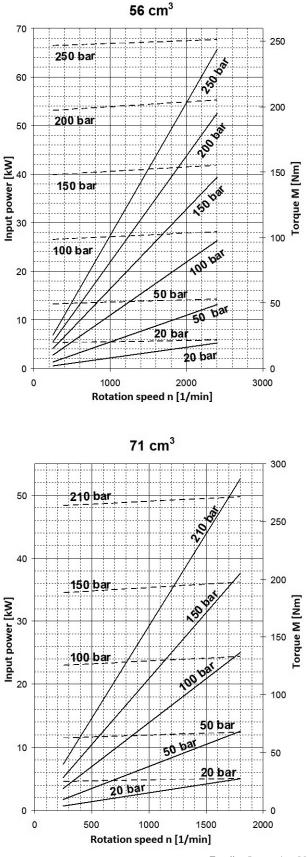
 \ast reversible pumps have outlet pressure ratings decreased by 10%



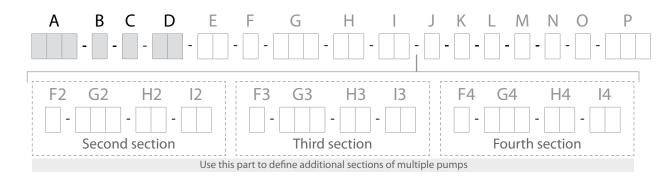

Flow rate and power curves

Member of the Danfoss Group **TUROLLA**





27 cm³


55

Model code

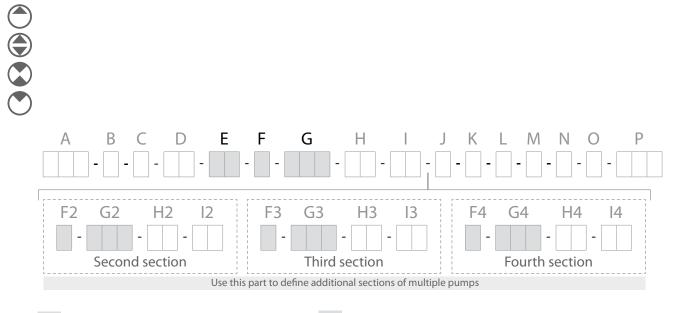
A

Code	Family
CAS	Cascade

С

Code	Rotation Direction
L	Left (Counterclockwise)
R	Right (Clockwise)
I	Bidirectional (Internally Drained)
E	Bidirectional (Externally Drained)

В


Code	Type (Number of sections)
1	Single, (One)
2	Tandem, (Two)
3	Triple, (Three)
4	Quadruple, (Four)
М	Motor

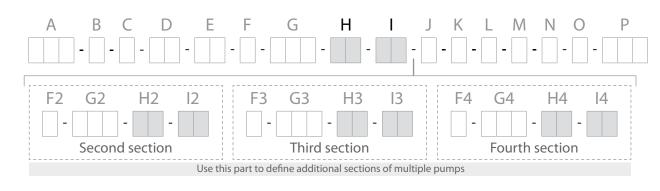
D

Code	Mouting Flange
AA	SAE-A 2 bolt
BB	SAE-B 2 bolt
B4	SAE-B 4 bolt
C2	SAE-C 2 bolt
C6	SAE-C 2+4 bolt (universal)
II	ISO

Ε

Code	Shaft Type
BA	1:8 Tapered Shaft
AA	1:5 Tapered Shaft
SE	Spline SAE A 9T
SC	Spline SAE A 11T
SH	Spline SAE B 13T
S 0	Spline SAE C 14T *
SV	Spline SAE BB 15T
S 3	Spline DIN 5462
S7	Spline DIN 5480 *
PB	Cylindric SAE B 7/8"
PZ	Cylindric SAE BB 1"
P3	Cylindric SAE C 1-1/4" *

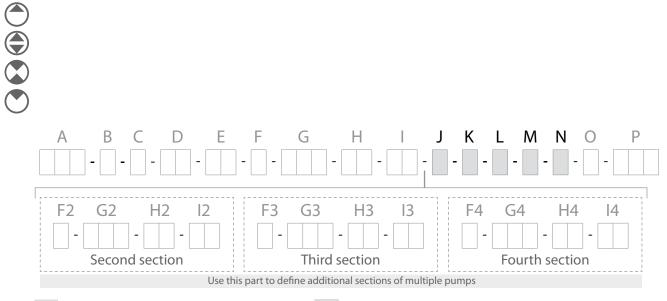
* available only incombination with heavy duty outrigger bearing (type H in the model code)


F

CodeFrame Size3Group 3

G

	Displacement				
Code	(cc)	in^3			
017	17,39	1,06			
022	22,50	1,37			
027	27,53	1,68			
034	34,05	2,08			
043	43,47	2,65			
051	51,44	3,14			
056	55,79	3,40			
061	61,59	3,76			
071	71,01	4,33			


ΗI

Inlet (H) and Outlet (I) Ports					
Code	Port Type	Description			
DA	27 x 1.5	Metric ORB			
DB	27 x 2	Metric ORB			
DD	33 x 1.5	Metric ORB			
DE	33 x 2	Metric ORB			
F5	G 3/4	BSP/GAS			
F6	G 1	BSP/GAS			
F7	G 1-1/4	BSP/GAS			
E6	1-1/16 - 12 UN	SAE ORB			
E8	1-5/16 - 12 UN	SAE ORB			
E9	1-5/8 - 12 UN	SAE ORB			
BM	18 x 40 x 4xM8	DIN Flange (X)			
BA	18 x 55 x 4xM8	DIN Flange (x)			
B5	15 x 35 x 4xM6	DIN Flange (x)			
B7	20 x 40 x 4xM6	DIN Flange (x)			
BN	25 x 55 x 4xM8	DIN Flange (x)			
BO	26 x 51 x 4xM10	DIN Flange (X)			

A2	3/4"	SAE Flange		
A3	1"	SAE Flange		
A4	1-1/4"	SAE Flange		
A5	1-1/2"	SAE Flange		
A6	2"	SAE Flange		
M4	3/4"	SAE Flange Metric		
M5	1"	SAE Flange Metric		
M6	1-1/4"	SAE Flange Metric		
M7	1-1/2"	SAE Flange Metric		
M8	2"	SAE Flange Metric		
(7	18x40xM8	EU Flange (+)		
CO	18x55xM8	EU Flange (+)		
CA	26x51xM10	EU Flange (+)		
СР	25x55xM8	EU Flange (+)		
NN	-	No port		
T1	1"	Tube Inlet		
T2	1-1/4"	Tube Inlet		
T3	1-1/2"	Tube Inlet		
T4	2"	Tube Inlet		

Note: When selecting multiple pump with single inlet, please specify required inlet size in the required section and specify NN (no port) for inlets in other sections

	Port Configuration			
Code	Туре			
A	Axial Ports			
R	Radial Ports			
I	Radial Inlet+Axial Outlet			
0	Axial Inlet+Radial Outlet			
Q	Quad ports (Radial AND Axial ports)			

L

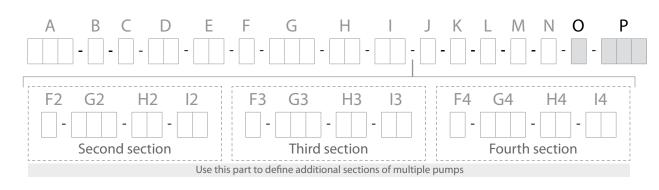
J

	Internal Seal Options			
Code	Description			
N	NBR			
В	Viton			
G	HNBR			

* Applies to shaft seal and case O-ring material. Pressure seals are always NBR

Ν

	Aux pad option			
Code	Description			
N	Without aux pad			
1	SAE-A 9T Aux Flange			
2	SAE-A 11T Aux Flange			

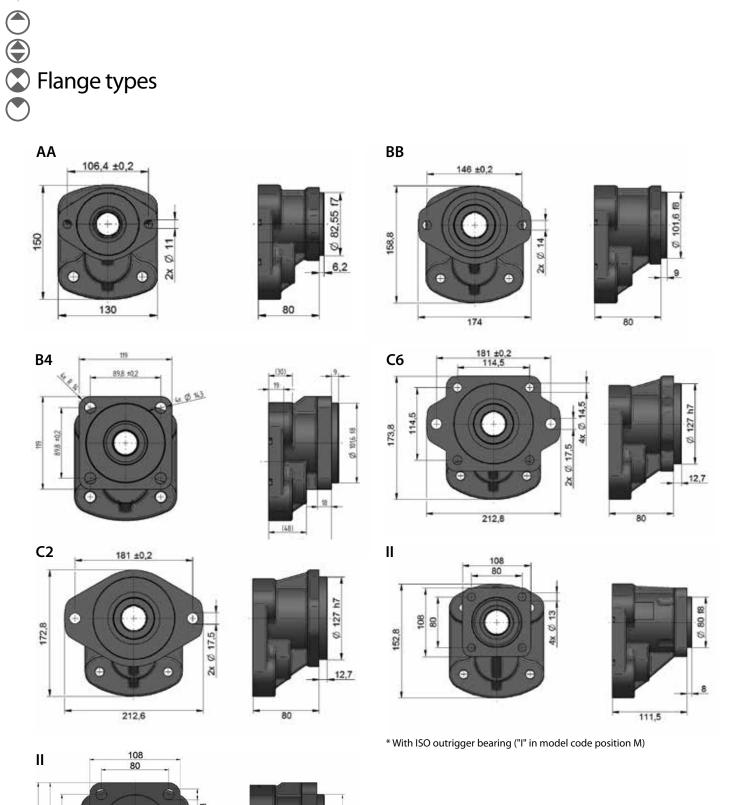

Κ

	Case Drain Options						
Code	Code Dimension Port Type						
N	N/A	No Drain					
1	M16x1.5	Metric ORB					
2	M18x1.5	Metric ORB					
4	G 1/4"	BSP/GAS					
5	G 3/8"	BSP/GAS					
6	G 1/2"	BSP/GAS					
8	9/16"-18 UNF	SAE ORB					

Μ

Outrigger bearing option				
Description				
Without outrigger Bearing				
Medium Duty Outrigger Bearing				
Heavy Duty Outrigger Bearing				
ISO Outrigger Bearing*				

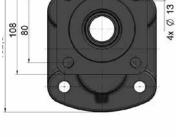
* Available only with ISO Flange (type II in the model code)

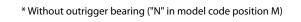

Wet mount option				
Code	Description			
N	Standard shaft seal, flange pilot diameter not sealed			
0	Standard shaft seal, O-ring on flange pilot diameter			
W	Double sided shaft seal, O-ring on flange pilot diameter			

Ρ

Special Configuration			
Code	Description		
NNN	Standard black Paint		
*	Special features (e.g. customer p.n., customized name plate, others)*		

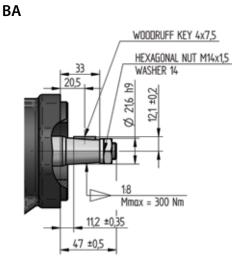
* contact Turolla for code specification

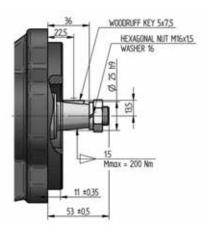


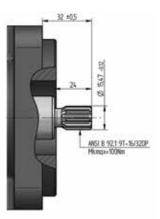

φ

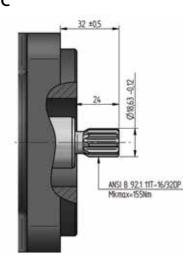
Ø 80 f

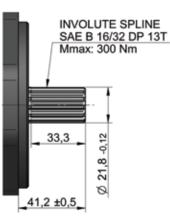
9

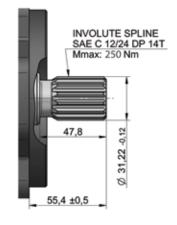

80

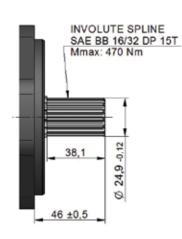


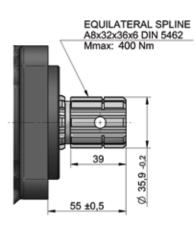

Shaft types


AA

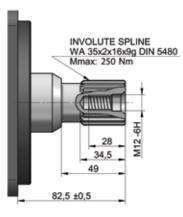

SE

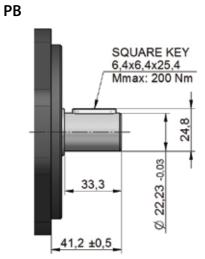

SC

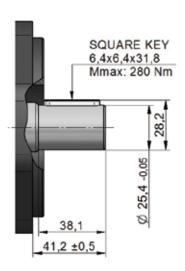

SH


S0

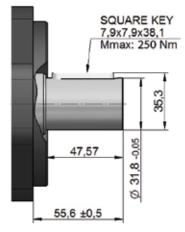
SV


S3





S7

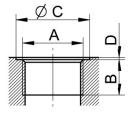


ΡZ

Ρ3

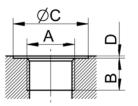
Combinations of flanges and shafts

Shaft Type	FI	ange Type	SAE-A	SAE-B 2 bolt	SAE-B 4 bolt	SAE-C 2 bolt	SAE-C 4+2 bolt	ISO	square
	Model Code		AA	BB	B4	C2	C6	Ш	R6
						•			
1:8 Tapered Shaft	BA		а	а	а				
1:5 Tapered Shaft	AA		а	а	а				
Spline SAE A 9T	SE		S	а	а	а	а		
Spline SAE A 11T	sc		S	а	а	а	а		
Spline SAE B 13T	SH		S	S	S	а	а		
Spline SAE C 14T *	SO				а	а	S	S	
Spline SAE BB 15T	SV		а	S	S	а	а		
Spline DIN 5462	53							S	
Spline DIN 5480 *	S7								S
Cylindric SAE B 7/8"	PB		а	S	S	а	а		
Cylindric SAE BB 1"	PZ		а	S	S	а	а		
Cylindric SAE C 1-1/4" *	P3			a	а	S	S		

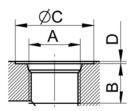

* Only available with ORB

S-Standard

a - Available



Port types


Metric thread according to ISO 6149

Displacement		Inlet	Outlet							
[cm ³]	Code	Α	B	C	D	Code	A	B	C	D
Cascade 3 17 - 51	DE	M 33x2	18	40	1	DB	M 27x2	16	33	1
Cascade 3 51 - 71	DF	M 48x2	22	56	1	DE	M 33x2	18	40	'

BSPP pipe thread according to ISO 228 - 1

Displacement [cm ³]		Inle	Outlet							
	Code	Α	В	С	D	Code	Α	В	С	D
Cascade3 17 - 34	F6	G 1"	18	45	1	F5	G 3/4	16	39	1
Cascade3 34 - 71	F7	G 1 1/4	24	58		F6	G 1"	18	45	

45∘

 \otimes

Ø

ш∔т

00

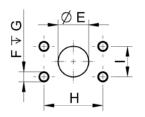
45

 \odot

ഗ

⊳

ш

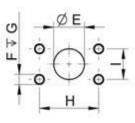

UNF thread according to SAE

Displacement	Inlet						Outlet						
[cm ³]	Code	А	В	С	C D Code		Α	В	С	D			
Cascade3 17 - 34	E8	1-5/16-12UN	10	49	1	E6	1-1/16-12UN	19	41	1			
Cascade3 34 - 71	E9	1-5/8-12UN	19 1 58		E8	1-5/16-12UN	19	49					

Flanged fittings according to DIN

Displacement [cm3]	Code		Inlet			Code	Outlet				
	Coue	E	F	G	H	Coue	E	F	G	H	
	BO	26	M10	10	51	BM	20	140	10	40	
Cascade3 17 - 51	BN	25	M8	16	55	BA	18	M8	16	55	
Cascade3 10 - 17	B7	20	M6	13	40	B5	15	M6	13	35	

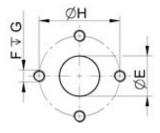
Note: Available only as side ports



Flanged fittings according to SAE, metric thread

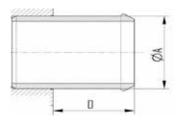
Displacement	Code		In	let			Code	Outlet					
[cm ³]	coue	E	F	G	H		coue	E	F	G	н		
Cascade 3 17 - 34	M5	25.4	M10	22	52.4	26.2	M4	19.0			47.6	22.2	
Cascade3 34 - 51	M6	30.5	MITO	22	58.7	30.2	M5	25.4	M10	22	52.4	26.2	
Cascade3 51 - 71	M7	39.3	M12	27	69.8	35.7	M6	30.5			58.7	30.2	
Cascade3 (single Inlet on multile pump)	M8	51.0	M12	27	77.8	42.9							

Note: Available only as side ports



Flanged fittings according to SAE, UNC thread

Displacement		Inlet						Outlet				
[cm ³]	Code	E	F	G	H	I	Code	E	F	G	H	I
Cascade 3 17 - 34	A3	25.4	3/8-16 UNC-2B	22	52.4	26.2	A2	19.0		~~	47.6	22.2
Cascade3 34 - 51	A4	30.5	7/16-14 UNC-2B	28.5	58.7	30.2	A3	25.4	3/8-16 UNC-2B	22	52.4	26.2
Cascade3 51 - 71	A5	39.3	1/2-13 UNC-2B	27	69.8	35.7	A4	30.5	7/16-14 UNC-2B	29	58.7	30.2
Cascade3 (single Inlet on multile	A6	51.0	1/2-13 UNC-2B	27	77.8	42.9						
pump)		51.0	.,2 15 ONC 25	21	, 7.0	72.5						


Note: Available only as side ports

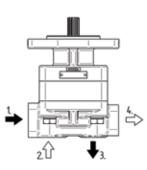
Flanged fittings – "cross"

Displacement [cm ³]	Code	Inlet				Code	Outlet					
	code	E	F	G	Н	Code	E	F	G	H		
0	CA	26	M10	18	51	C7	10		18	40		
Cascade3 17 - 51	СР	25	M8	16	55	со	18	M8	16	55		

Note: Available only as side ports

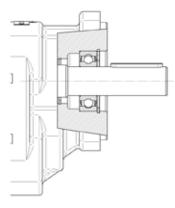
Tube Inlets

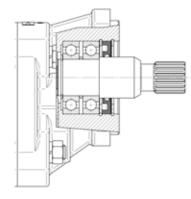
Disale compart [cm3]	Code	Inlet			
Displacement [cm ³]	Code	A	D		
Cascade 3 17 - 34	T1	25,4	27,6		
Cascade3 34 - 51	T2	31,7	29,7		
Cascade3 51 - 71	Т3	38,1	31,5		
Cascade 3 tandems/triples (single inlet)	T4	50,8	29,7		


Drain ports:

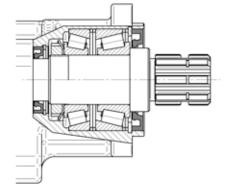
	Case Drain Optio	ons
Code	Dimension	Port Type
N	N/A	No Drain
1	M16x1.5	Metric ORB
2	M18x1.5	Metric ORB
4	G 1/4"	BSP/GAS
5	G 3/8"	BSP/GAS
6	G 1/2"	BSP/GAS
8	9/16"-18 UNF	SAE ORB

Q (Quad ports) options:


In case of quad ports, there are both rear and side ports present. Rear and side inlet of the same type and size are specified by position E in the model code, rear and side outlet of the same type and size are specified by position I in the model code. The products with quad port configuration are delivered with rear ports fitted with sealed metal plugs.

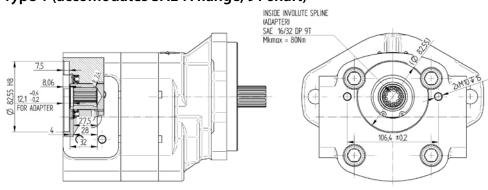

Outrigger bearings

The need for an additonal outrigger bearing depends on many factors including but no limited to magnitude of external force, direction of external force, point of effect on the shaft, load cycle etc. When in doubt if an outrigger bearing is necessary, contact Turolla technical support with application parameters.

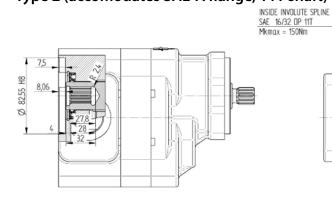

Type M (Medium duty bearing)

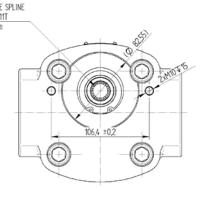
Type H (Heavy duty bearing)

Type I (ISO bearing)

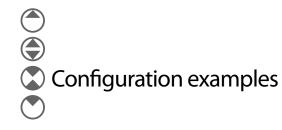


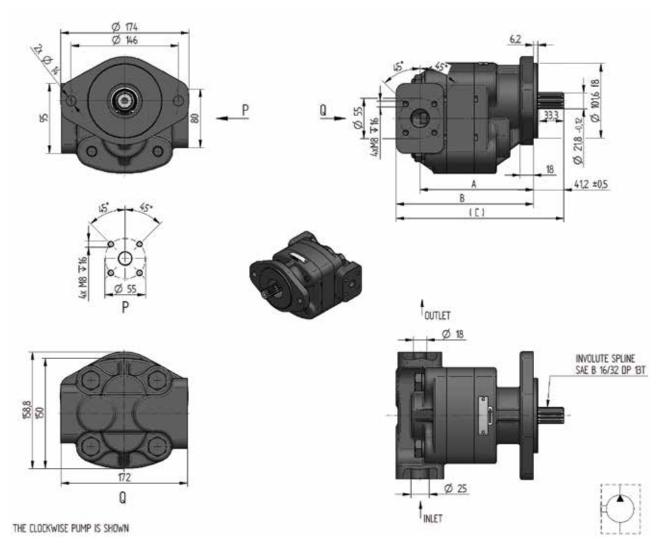
Note: Available only with ISO Flange (II)

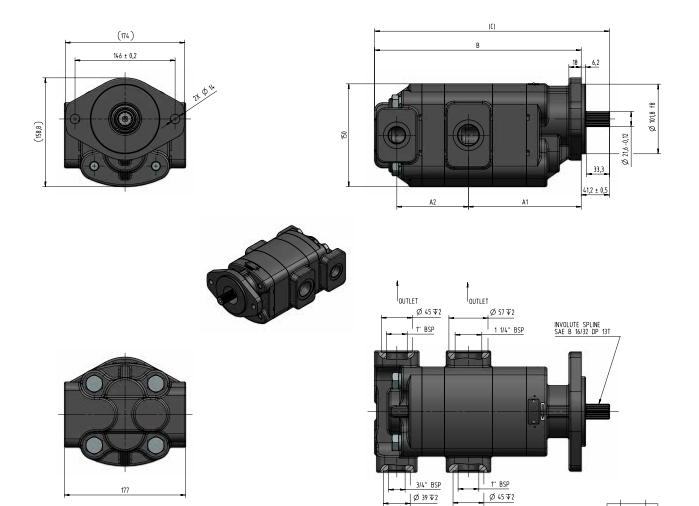



Aux pads

Type 1 (accomodates SAE-A flange, 9T shaft)


Type 2 (accomodates SAE-A flange, 11T shaft)





CAS-1-R-BB-SH-3-071-BN-BA-R-N-N-NNN-NNN R 71 250 1 800 63.7 128.5 168.3 CAS-1-L-BB-SH-3-071-BN-BA-R-N-N-NNN-NNN Т CAS-1-R-BB-SH-3-051-BN-BA-R-N-N-NNN-NNN R 158.9 51 350 2 600 59.0 119.1 CAS-1-L-BB-SH-3-051-BN-BA-R-N-N-NNN-NNN Т CAS-1-R-BB-SH-3-043-BN-BA-R-N-N-NNN-NNN R 400 2 800 48.8 138.4 43 98.6 CAS-1-L-BB-SH-3-043-BN-BA-R-N-N-NNN-NNN L CAS-1-R-BB-SH-3-034-BN-BA-R-N-N-NNN-NNN R 34 400 3 000 45.6 92.3 132.1 CAS-1-L-BB-SH-3-034-BN-BA-R-N-N-NNN-NNN L CAS-1-R-BB-SH-3-027-BN-BA-R-N-NNN-NNN R 400 3 200 44.0 129.0 27 89.2 CAS-1-L-BB-SH-3-027-BN-BA-R-N-N-NNN-NNN L CAS-1-R-BB-SH-3-017-BN-BA-R-N-NNN-NNN R 17 400 3 200 42.5 86.0 125.8 CAS-1-L-BB-SH-3-017-BN-BA-R-N-N-NNN-NNN L DISPLA-MIN. MAX. C A B DIRECT. Model Code CEMENT SPEED DIMENSION OF ROT. [cm³/1] [mm] [min⁻¹]

evo www

THE ANTICLOCKWISE PUMP IS SHOWN

Model Code		CEM [cm	IENT 1 ³ /1]	SPI [mi	EED in ⁻¹]		DIMEI [m		
	DIRECT.	DIS	PLA-	MIN.	MAX.	A1	A2	В	C
CAS-2-L-BB-SH-3-034-F7-F6-3-017-F6-F5-R-N-N-N-N-NNN	L	34	17	400	3000	152,5	97,5	282,5	323,7
CAS-2-R-BB-SH-3-034-F7-F6-3-017-F6-F5-R-N-N-N-N-NNN	R	24	17	400	2000	1525	07.5	202.5	222.7
CAS-2-L-BB-SH-3-043-F7-F6-3-022-F6-F5-R-N-N-N-N-N-NNN	L	43	22	400	2800	159	101	292,5	333,7
CAS-2-R-BB-SH-3-043-F7-F6-3-022-F6-F5-R-N-N-N-N-NNN	R	43	22	400	2000	150	101	202.5	222.7
CAS-2-L-BB-SH-3-051-F7-F6-3-027-F6-F5-R-N-N-N-N-NNN	L	51	27	400	2600	164,5	104,5	301,5	342,7
CAS-2-R-BB-SH-3-051-F7-F6-3-027-F6-F5-R-N-N-N-N-NNN	R	F1	27	400	2000	1645	104.5	201 5	242.7
CAS-2-L-BB-SH-3-056-F7-F6-3-034-F6-F5-R-N-N-N-N-NNN	L	56	34	400	2400	167,5	109	309	350,2
CAS-2-R-BB-SH-3-056-F7-F6-3-034-F6-F5-R-N-N-N-N-N-NNN	R	50	24	400	2400	1675	100	200	250.2
CAS-2-L-BB-SH-3-061-F7-F6-3-043-F6-F5-R-N-N-N-N-NNN	L	61	43	400	2200	171,5	115,5	319,5	360,7
CAS-2-R-BB-SH-3-061-F7-F6-3-043-F6-F5-R-N-N-N-N-NNN	R	C1	42	400	2200	171 5	1155	210.5	260.7
CAS-2-L-BB-SH-3-071-F7-F6-3-051-F6-F5-R-N-N-N-N-NNN	L	71	51	350	1800	178	121	331,5	372,7
CAS-2-R-BB-SH-3-071-F7-F6-3-051-F6-F5-R-N-N-N-N-NNN	R	71	F1	250	1000	170	121	221.5	272.7

I_{INLET}

| Inlet

Notes

Italy Via Natale Salieri, 33-35 40024 Castel San Pietro Terme Bologna, Italia Phone: +39 051 6054 411

U.S.A. 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6677

E-mail: turollaocg@turollaocg.com www.turollaocg.com Local address